Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Microbiol ; 25(12): 3484-3501, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37974518

RESUMEN

Environmental DNA sequencing is the gold standard to reveal microbial community structures. In most applications, a one-fragment PCR approach is applied to amplify a taxonomic marker gene, usually a hypervariable region of the 16S rRNA gene. We used a new reverse complement (RC)-PCR-based assay that amplifies seven out of the nine hypervariable regions of the 16S rRNA gene, to interrogate bacterial communities in sediment samples collected from different coastal marine sites with an impact gradient. In parallel, we employed a traditional one-fragment analysis of the hypervariable V3-V4 region to investigate whether the RC-PCR reveals more of the 'unseen' diversity obtained by the one-fragment approach. As a benchmark for the full deck of diversity, we subjected the samples to PCR-free metagenomic sequencing. None of the two PCR-based approaches recorded the full taxonomic repertoire obtained from the metagenomics datasets. However, the RC-PCR approach detected 2.8 times more bacterial genera compared to the near-saturation sequenced V3-V4 samples. RC-PCR is an ideal compromise between the standard one-fragment approach and metagenomics sequencing and may guide future environmental sequencing studies, in which bacterial diversity is a central subject.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Microbiota , ARN Ribosómico 16S/genética , Bacterias/genética , Análisis de Secuencia de ADN , Microbiota/genética , Filogenia
2.
Environ Pollut ; 322: 121157, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36716948

RESUMEN

Microplastics in the aquatic environment serve as a habitat for microbial life, on which they can form biofilms. However, how the development of the biofilm alters the properties of floating microplastics that are at the air-water interface and, therefore, not fully submerged, is not well understood. In this context, an aging experiment was conducted to monitor biofilm formation and changes in physico-chemical properties of low-density polyethylene (floating) microplastics over time. The growth of the biofilm followed the typical bacterial/biofilm growth phases and reached about 30% of the total mass of the microplastics, while the concentration of extracellular polymeric substances within the biofilm remained stable. Presence of chlorophyll a and urease activity indicated presence of photosynthetic microrganisms within the biofilm which was also confirmed by analysis of the biofilm composition. Chemical characterization by FTIR showed the formation of additional functional groups attributed to the formed biofilm, and SEM imaging showed cracks on the surface of the aged microplastics, indicating incipient degradation of the polyethylene. Moreover, the adsorption capacity of the aged particles for metals (Pb(II)) was 52% higher compared to the pristine ones. Aging increased the density and size of the particles; however, it did not lead to the submersion of the aged particles even after 12 weeks of aging, suggesting that additional environmental processes may influence the transport of microplastics from the air-water interface into the water body.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Agua , Clorofila A/análisis , Contaminantes Químicos del Agua/análisis , Biopelículas , Polietileno
3.
Sci Rep ; 12(1): 18089, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302793

RESUMEN

Paramecium bursaria is a mixotrophic ciliate species, which is common in stagnant and slow-flowing, nutrient-rich waters. It is usually found living in symbiosis with zoochlorellae (green algae) of the genera Chlorella or Micractinium. We investigated P. bursaria isolates from around the world, some of which have already been extensively studied in various laboratories, but whose morphological and genetic identity has not yet been completely clarified. Phylogenetic analyses of the SSU and ITS rDNA sequences revealed five highly supported lineages, which corresponded to the syngen and most likely to the biological species assignment. These syngens R1-R5 could also be distinguished by unique synapomorphies in the secondary structures of the SSU and the ITS. Considering these synapomorphies, we could clearly assign the existing GenBank entries of P. bursaria to specific syngens. In addition, we discovered synapomorphies at amino acids of the COI gene for the identification of the syngens. Using the metadata of these entries, most syngens showed a worldwide distribution, however, the syngens R1 and R5 were only found in Europe. From morphology, the syngens did not show any significant deviations. The investigated strains had either Chlorella variabilis, Chlorella vulgaris or Micractinium conductrix as endosymbionts.


Asunto(s)
Alveolados , Chlorella vulgaris , Chlorophyta , Cilióforos , Oligohimenóforos , Paramecium , Paramecium/genética , Filogenia , Chlorophyta/genética , Simbiosis/genética
4.
Microorganisms ; 10(7)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35889042

RESUMEN

The subclass Cyrtophoria are a group of morphologically specialized ciliates which mainly inhabit soil, freshwater, brackish water, and marine environments. In this study, we revise more than 50 publications on the taxonomy, phylogeny, and ecology of cyrtophorian ciliates in China since the first publication in 1925, most of which were carried out in coastal areas. The research history can be divided into three periods: the early stage, the Tibet stage, and the molecular stage. To date, 103 morpho-species (147 isolates) have been formally recorded in China, with ciliature patterns described for 82 of them. A species checklist and an illustrated identification key to the genera are provided. A total of 100 small subunit rDNA sequences have been obtained for 74 taxonomic hits (lowest taxonomic rank to species or genus). These sequences are used for the study of molecular phylogeny. Based on these morphological data and molecular phylogeny analyses, we synthesize the understanding of the phylogeny of cyrtophorian ciliates. We hypothesize that the key evolutionary event of cyrtophorian ciliates lies in the separation of the stomatogenesis zone (postoral kineties) from the left kineties, namely, the formation of an independent "sexual organelle". We, furthermore, briefly summarize the ecological features of cyrtophorian ciliates and provide a comprehensive bibliography of related research from China. Finally, we give an outlook on the future research directions of these taxa.

5.
Mol Biol Cell ; 32(8): 664-674, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33596095

RESUMEN

For the biogenesis of mitochondria, hundreds of proteins need to be targeted from the cytosol into the various compartments of this organelle. The intramitochondrial targeting routes these proteins take to reach their respective location in the organelle are well understood. However, the early targeting processes, from cytosolic ribosomes to the membrane of the organelle, are still largely unknown. In this study, we present evidence that an integral membrane protein of the endoplasmic reticulum (ER), Ema19, plays a role in this process. Mutants lacking Ema19 show an increased stability of mitochondrial precursor proteins, indicating that Ema19 promotes the proteolytic degradation of nonproductive precursors. The deletion of Ema19 improves the growth of respiration-deficient cells, suggesting that Ema19-mediated degradation can compete with productive protein import into mitochondria. Ema19 is the yeast representative of a conserved protein family. The human Ema19 homologue is known as sigma 2 receptor or TMEM97. Though its molecular function is not known, previous studies suggested a role of the sigma 2 receptor as a quality control factor in the ER, compatible with our observations about Ema19. More globally, our data provide an additional demonstration of the important role of the ER in mitochondrial protein targeting.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas , Proteolisis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Front Microbiol ; 12: 787290, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35185817

RESUMEN

Species of the ciliate genus Urotricha are key players in freshwater plankton communities. In the pelagial of lakes, about 20 urotrich species occur throughout an annual cycle, some of which play a pivotal role in aquatic food webs. For example, during the phytoplankton spring bloom, they consume a remarkable proportion of the algal production. In ecological studies, urotrich ciliates are usually merely identified to genus rank and grouped into size classes. This is unsatisfying considering the distinct autecological properties of individual species and their specific spatial and temporal distribution patterns. As a basis for future research, we characterized in detail four common urotrich morphotypes, i.e., specimens identified as U. furcata and tentatively as U. agilis, U. pseudofurcata, and U. castalia, using state-of-the-art methods. We used an integrative polyphasic approach, in which morphological studies (in vivo observation, silver staining methods, scanning electron microscopy) were linked with a molecular approach exploiting four different gene fragments as taxonomic DNA barcodes with different resolution potential (SSU rDNA, ITS-1, ITS-2, hypervariable V4 and V9 regions of the SSU rDNA). We shed light on the diversity of urotrich ciliates as well as on their global distribution patterns, and annual cycles. Additionally, we coupled individual species occurrences and environmental parameters, and subsequently modeled the distribution and occurrence, using logistic regressions. Furthermore, for one strain putatively identified as U. castalia, we ascertained the optimal cultivation media and food preferences. Thereby, our comprehensive view on these important freshwater ciliates that frequently occur in environmental high throughput sequencing datasets worldwide will allow future studies to better exploit protistan plankton data from lakes.

7.
Sci Total Environ ; 755(Pt 2): 142623, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33045604

RESUMEN

The bathymetric gradient is one of the most important factors that regulate the distribution of life. However, community variations of benthic ciliates along bathymetric gradients in the deep sea remain rather unexplored. In this study, we hypothesize that in the deep sea, the bathymetric gradient shapes the benthic ciliate community composition rather than the species richness. Here, we evaluated the distribution patterns and drivers of benthic ciliate communities of an abyssal plain, a seamount, and a trench with water depths ranging from 800 m down to 6600 m by high throughput eDNA sequencing and statistical analyses. We observed no significant correlation between ciliate operated taxonomic unit (OTU) richness and water depth. A meta-analysis, which combined our previously published data from the neritic habitats, supports the notion that water depth exceeding 800 m has little effect on the richness of benthic ciliate species. In contrast, the composition of deep-sea ciliate communities was significantly distinct in different habitats along the bathymetric gradients. A SourceTracker analysis revealed extremely low connectivity among ciliate communities along the bathymetric gradients. More than 95% of the community dissimilarity in the deep-sea floor was attributed to species replacement, which might be caused by environmental sorting or historical constraints. Furthermore, the observed community variations could be ascribed more to water depth than to geographic distance. The findings imply that the strong force of environmental sorting along the bathymetric gradients and the low connectivity among the ciliate communities might lead to an isolated evolution. This could shape the community composition rather than the species richness, which is mainly determined by the limited nutrient availability and the extreme environmental conditions in the deep sea.


Asunto(s)
Biodiversidad , Cilióforos , Ecosistema
8.
Protist ; 171(4): 125751, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32890795

RESUMEN

With highly specialized morphology and unexplored functional capacities, ciliates from extreme habitats are drawing increasing attention. During a microbial investigation of a solar saltern pond (salinity 240‰) on Mallorca, Spain, a previously unknown scuticociliate, Platynematum rossellomorai n. sp. was isolated, cultured and studied using a tripartite approach consisting of a morphological description, a molecular analysis and an ecophysiological characterization. The ciliate has distinct morphological characteristics and its main diagnostic features include a large anteriorly positioned oral area (occupying almost half of the body length), two caudal cilia and a small number of somatic kineties. However, due to the most important generic feature of Cinetochilidae, the consistency of the arrangement of the adoral membranes, the ciliate is classified as a new member of the genus Platynematum. Its 18S rRNA gene sequence shows a sequence similarity of 91.0% to the closest deposited relative, Platynematum salinarum, and a phylogenetic analysis reveals a close relationship to other members of the family Cinetochilidae Perty, 1852. Growth experiments identify the ciliate as a borderline halophile, with a tolerance range between 180 and 280‰ salinity. The ciliate apparently accumulates the compatible solutes glycine betaine and ectoine to counterbalance osmotic stress, however, other osmoregulatory mechanisms are not excluded.


Asunto(s)
Oligohimenóforos/clasificación , Filogenia , Estanques/parasitología , ADN Protozoario/genética , Oligohimenóforos/citología , Oligohimenóforos/genética , ARN Ribosómico 18S/genética , España , Especificidad de la Especie
9.
J Eukaryot Microbiol ; 67(5): 612-622, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32498124

RESUMEN

During the last decade, high-throughput metabarcoding became routine for analyzing protistan diversity and distributions in nature. Amid a multitude of exciting findings, scientists have also identified and addressed technical and biological limitations, although problems still exist for inference of meaningful taxonomic and ecological knowledge based on short DNA sequences. Given the extensive use of this approach, it is critical to settle our understanding on its strengths and weaknesses and to synthesize up-to-date methodological and conceptual trends. This article summarizes key scientific and technical findings, and identifies current and future directions in protist research that uses metabarcoding.


Asunto(s)
Biodiversidad , Código de Barras del ADN Taxonómico , Eucariontes/clasificación , Filogenia , Eucariontes/genética , Secuenciación de Nucleótidos de Alto Rendimiento
10.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA