Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 25(8): 4715-4727, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38959412

RESUMEN

Centromeres are specific segments of chromosomes comprising two types of nucleosomes: canonical nucleosomes containing an octamer of H2A, H2B, H3, and H4 histones and CENP-A nucleosomes in which H3 is replaced with its analogue CENP-A. This modification leads to a difference in DNA wrapping (∼121 bp), considerably less than 147 bp in canonical nucleosomes. We used atomic force microscopy (AFM) and high-speed AFM (HS-AFM) to characterize nanoscale features and dynamics for both types of nucleosomes. For both nucleosomes, spontaneous asymmetric unwrapping of DNA was observed, and this process occurs via a transient state with ∼100 bp DNA wrapped around the core, followed by a rapid dissociation of DNA. Additionally, HS-AFM revealed higher stability of CENP-A nucleosomes compared with H3 nucleosomes in which dissociation of the histone core occurs prior to the nucleosome dissociation. These results help elucidate the differences between these nucleosomes and the potential biological necessity for CENP-A nucleosomes.


Asunto(s)
Centrómero , Nucleosomas , Nucleosomas/química , Nucleosomas/metabolismo , Nucleosomas/ultraestructura , Centrómero/química , Centrómero/metabolismo , Estructura Cuaternaria de Proteína , ADN/química , ADN/metabolismo , Histonas/química , Histonas/metabolismo , Proteína A Centromérica/química , Proteína A Centromérica/metabolismo , Microscopía de Fuerza Atómica
2.
J Phys Chem B ; 128(24): 5803-5813, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38860885

RESUMEN

Centromeric chromatin is a subset of chromatin structure and governs chromosome segregation. The centromere is composed of both CENP-A nucleosomes (CENP-Anuc) and H3 nucleosomes (H3nuc) and is enriched with alpha-satellite (α-sat) DNA repeats. These CENP-Anuc have a different structure than H3nuc, decreasing the base pairs (bp) of wrapped DNA from 147 bp for H3nuc to 121 bp for CENP-Anuc. All these factors can contribute to centromere function. We investigated the interaction of H3nuc and CENP-Anuc with NF-κB, a crucial transcription factor in regulating immune response and inflammation. We utilized atomic force microscopy (AFM) to characterize complexes of both types of nucleosomes with NF-κB. We found that NF-κB unravels H3nuc, removing more than 20 bp of DNA, and that NF-κB binds to the nucleosomal core. Similar results were obtained for the truncated variant of NF-κB comprised only of the Rel homology domain and missing the transcription activation domain (TAD), suggesting that RelATAD is not critical in unraveling H3nuc. By contrast, NF-κB did not bind to or unravel CENP-Anuc. These findings with different affinities for two types of nucleosomes to NF-κB may have implications for understanding the mechanisms of gene expression in bulk and centromere chromatin.


Asunto(s)
Centrómero , Cromatina , FN-kappa B , Nucleosomas , Centrómero/metabolismo , Centrómero/química , Cromatina/metabolismo , Cromatina/química , FN-kappa B/metabolismo , Nucleosomas/metabolismo , Nucleosomas/química , Humanos , Microscopía de Fuerza Atómica , Unión Proteica , Proteína A Centromérica/metabolismo , Proteína A Centromérica/química , ADN/química , ADN/metabolismo
3.
bioRxiv ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38405937

RESUMEN

Centromeric chromatin is a subset of chromatin structure and governs chromosome segregation. The centromere is composed of both CENP-A nucleosomes (CENP-A nuc ) and H3 nucleosomes (H3 nuc ) and is enriched with alpha-satellite (α-sat) DNA repeats. These CENP-A nuc have a different structure than H3 nuc , decreasing the base pairs (bp) of wrapped DNA from 147 bp for H3 nuc to 121 bp for CENP-A nuc . All these factors can contribute to centromere function. We investigated the interaction of H3 nuc and CENP-A nuc with NF-κB, a crucial transcription factor in regulating immune response and inflammation. We utilized Atomic Force Microscopy (AFM) to characterize complexes of both types of nucleosomes with NF-κB. We found that NF-κB unravels H3 nuc , removing more than 20 bp of DNA, and that NF-κB binds to the nucleosomal core. Similar results were obtained for the truncated variant of NF-κB comprised only of the Rel Homology domain and missing the transcription activation domain (TAD), suggesting the RelA TAD is not critical in unraveling H3 nuc . By contrast, NF-κB did not bind to or unravel CENP- A nuc . These findings with different affinities for two types of nucleosomes to NF-κB may have implications for understanding the mechanisms of gene expression in bulk and centromere chromatin.

4.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36232705

RESUMEN

Atomic Force Microscopy (AFM) is widely used for topographic imaging of DNA and protein-DNA complexes in ambient conditions with nanometer resolution. In AFM studies of protein-DNA complexes, identifying the protein's location on the DNA substrate is one of the major goals. Such studies require distinguishing between the DNA ends, which can be accomplished by end-specific labeling of the DNA substrate. We selected as labels three-way DNA junctions (3WJ) assembled from synthetic DNA oligonucleotides with two arms of 39-40 bp each. The third arm has a three-nucleotide overhang, GCT, which is paired with the sticky end of the DNA substrate generated by the SapI enzyme. Ligation of the 3WJ results in the formation of a Y-type structure at the end of the linear DNA mole cule, which is routinely identified in the AFM images. The yield of labeling is 69%. The relative orientation of arms in the Y-end varies, such dynamics were directly visualized with time-lapse AFM studies using high-speed AFM (HS-AFM). This labeling approach was applied to the characterization of the nucleosome arrays assembled on different DNA templates. HS-AFM experiments revealed a high dynamic of nucleosomes resulting in a spontaneous unraveling followed by disassembly of nucleosomes.


Asunto(s)
ADN , Nucleosomas , ADN/química , Replicación del ADN , Microscopía de Fuerza Atómica/métodos , Oligonucleótidos/química
5.
Nanomedicine ; 46: 102604, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36113829

RESUMEN

The current vaccine development strategies for the COVID-19 pandemic utilize whole inactive or attenuated viruses, virus-like particles, recombinant proteins, and antigen-coding DNA and mRNA with various delivery strategies. While highly effective, these vaccine development strategies are time-consuming and often do not provide reliable protection for immunocompromised individuals, young children, and pregnant women. Here, we propose a novel modular vaccine platform to address these shortcomings using chemically synthesized peptides identified based on the validated bioinformatic data about the target. The vaccine is based on the rational design of an immunogen containing two defined B-cell epitopes from the spike glycoprotein of SARS-CoV-2 and the universal T-helper epitope PADRE. The epitopes were conjugated to short DNA probes and combined with a complementary scaffold strand, resulting in sequence-specific self-assembly. The immunogens were then formulated by conjugation to gold nanoparticles by three methods or by co-crystallization with epsilon inulin. BALB/C mice were immunized with each formulation, and the IgG immune responses and virus neutralizing titers were compared. The results demonstrate that this assembly is immunogenic and generates neutralizing antibodies against wildtype SARS-CoV-2 and the Delta variant.


Asunto(s)
COVID-19 , Nanopartículas del Metal , Complicaciones Infecciosas del Embarazo , Vacunas Virales , Embarazo , Ratones , Animales , Femenino , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19 , Glicoproteína de la Espiga del Coronavirus/química , Pandemias/prevención & control , COVID-19/prevención & control , Oro , Ratones Endogámicos BALB C , Anticuerpos Neutralizantes , Epítopos de Linfocito B/química , Anticuerpos Antivirales
6.
Res Sq ; 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35118461

RESUMEN

The current vaccine development strategies for the COVID-19 pandemic utilize whole inactive or attenuated viruses, virus-like particles, recombinant proteins, and antigen-coding DNA and mRNA with various delivery strategies. While highly effective, these vaccine development strategies are time-consuming and often do not provide reliable protection for immunocompromised individuals, young children, and pregnant women. Here, we propose a novel modular vaccine platform to address these shortcomings using chemically synthesized peptides and identified based on the validated bioinformatic data about the target. The vaccine is based on the rational design of an immunogen containing two defined B-cell epitopes from the spike protein of SARS-Co-V2 and a universal T-helper epitope PADRE assembled on the DNA scaffold. The results demonstrate that this assembly is immunogenic and generates neutralizing antibodies against SARS-CoV-2 wild type and its variants of concerns (VOC). This newly designed peptide nanoarray scaffold vaccine is useful in controlling virus transmission in immunocompromised individuals, as well as individuals who are prone to vaccine-induced adverse reactions. Given that the immunogen is modular, epitopes or immunomodulatory ligands can be easily introduced in order to tailor the vaccine to the recipient. This also allows the already developed vaccine to be modified rapidly according to the identified mutations of the virus.

7.
Sci Rep ; 11(1): 24086, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34916563

RESUMEN

Chromatin structure is dictated by nucleosome assembly and internucleosomal interactions. The tight wrapping of nucleosomes inhibits gene expression, but modifications to histone tails modulate chromatin structure, allowing for proper genetic function. The histone H4 tail is thought to play a large role in regulating chromatin structure. Here we investigated the structure of nucleosomes assembled with a tail-truncated H4 histone using Atomic Force Microscopy. We assembled tail-truncated H4 nucleosomes on DNA templates allowing for the assembly of mononucleosomes or dinucleosomes. Mononucleosomes assembled on nonspecific DNA led to decreased DNA wrapping efficiency. This effect is less pronounced for nucleosomes assembled on positioning motifs. Dinucleosome studies resulted in the discovery of two effects- truncation of the H4 tail does not diminish the preferential positioning observed in full-length nucleosomes, and internucleosomal interaction eliminates the DNA unwrapping effect. These findings provide insight on the role of histone H4 in chromatin structure and stability.


Asunto(s)
Histonas/fisiología , Nucleosomas/metabolismo , Nucleosomas/fisiología , ADN/metabolismo , Expresión Génica , Histonas/genética , Histonas/metabolismo , Humanos , Microscopía de Fuerza Atómica , Nucleosomas/genética , Nucleosomas/ultraestructura , Estabilidad Proteica
8.
Biochim Biophys Acta Gen Subj ; 1865(9): 129934, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34029641

RESUMEN

NF-κB is a transcription factor responsible for activating hundreds of genes in mammalian organisms. To accomplish its function, NF-κB must interact with DNA occupied by nucleosomes, but how this interaction occurs is unclear. Here we used Atomic Force Microscopy to characterize complexes of NF-κB with nucleosomes assembled on different DNA templates. The assembly of NF-κB-nucleosome complexes leads to a substantial decrease of DNA wrapping efficiency from 149 ± 2 bp (SEM) for the control nucleosome sample to 135 ± 3 bp for complexes of nucleosomes with NF-κB. Mapping of the nucleosomes did not reveal displacement of under-wrapped nucleosomes from their original position, suggesting that unravelling involves dissociation of one or both flanks of the nucleosomes. Binding of NF-κB to the core was identified by nucleosome core volume measurements. We discovered two binding modes of NF-κB associated with nucleosome unravelling - NF-κB bound to the nucleosome core and to the DNA flanks. From these findings we propose two models explaining the interaction of NF-κB with the nucleosome complex. The partial unravelling of nucleosomes by NF-κB makes the DNA segment at the edge of the nucleosome core accessible, facilitating the transcription process. We speculate that NF-κB can function as a pioneer factor, enhancing its ability to facilitate rapid transcriptional response to cell stress.


Asunto(s)
FN-kappa B/metabolismo , Nucleosomas/metabolismo , ADN/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA