Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lancet Gastroenterol Hepatol ; 8(8): 748-759, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37385282

RESUMEN

Accumulation of fibroblasts in the premalignant or malignant liver is a characteristic feature of liver cancer, but has not been therapeutically leveraged despite evidence for pathophysiologically relevant roles in tumour growth. Hepatocellular carcinoma is a largely non-desmoplastic tumour, in which fibroblasts accumulate predominantly in the pre-neoplastic fibrotic liver and regulate the risk for hepatocellular carcinoma development through a balance of tumour-suppressive and tumour-promoting mediators. By contrast, cholangiocarcinoma is desmoplastic, with cancer-associated fibroblasts contributing to tumour growth. Accordingly, restoring the balance from tumour-promoting to tumour-suppressive fibroblasts and mediators might represent a strategy for hepatocellular carcinoma prevention, whereas in cholangiocarcinoma, fibroblasts and their mediators could be leveraged for tumour treatment. Importantly, fibroblast mediators regulating hepatocellular carcinoma development might exert opposite effects on cholangiocarcinoma growth. This Review translates the improved understanding of tumour-specific, location-specific, and stage-specific roles of fibroblasts and their mediators in liver cancer into novel and rational therapeutic concepts.


Asunto(s)
Neoplasias de los Conductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patología , Fibroblastos/patología , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Colangiocarcinoma/terapia , Colangiocarcinoma/patología , Conductos Biliares Intrahepáticos/patología
3.
Gastroenterology ; 164(7): 1279-1292, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36894036

RESUMEN

BACKGROUND & AIMS: Despite recent progress, long-term survival remains low for hepatocellular carcinoma (HCC). The most effective HCC therapies target the tumor immune microenvironment (TIME), and there are almost no therapies that directly target tumor cells. Here, we investigated the regulation and function of tumor cell-expressed Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) in HCC. METHODS: HCC was induced in mice by Sleeping Beauty-mediated expression of MET, CTNNB1-S45Y, or TAZ-S89A, or by diethylnitrosamine plus CCl4. Hepatocellular TAZ and YAP were deleted in floxed mice via adeno-associated virus serotype 8-mediated expression of Cre. TAZ target genes were identified from RNA sequencing, confirmed by chromatin immunoprecipitation, and evaluated in a clustered regularly interspaced short palindromic repeats interference (CRISPRi) screen. TEA domain transcription factors (TEADs), anillin (ANLN), Kif23, and programmed cell death protein ligand 1 were knocked down by guide RNAs in dead clustered regularly interspaced short palindromic repeats-associated protein 9 (dCas9) knock-in mice. RESULTS: YAP and TAZ were up-regulated in murine and human HCC, but only deletion of TAZ consistently decreased HCC growth and mortality. Conversely, overexpression of activated TAZ was sufficient to trigger HCC. TAZ expression in HCC was regulated by cholesterol synthesis, as demonstrated by pharmacologic or genetic inhibition of 3-hydroxy-3-methylglutaryl- coenzyme A reductase (HMGCR), farnesyl pyrophosphate synthase, farnesyl-diphosphate farnesyltransferase 1 (FDFT1), or sterol regulatory element-binding protein 2 (SREBP2). TAZ- and MET/CTNNB1-S45Y-driven HCC required the expression of TEAD2 and, to a lesser extent, TEAD4. Accordingly, TEAD2 displayed the most profound effect on survival in patients with HCC. TAZ and TEAD2 promoted HCC via increased tumor cell proliferation, mediated by TAZ target genes ANLN and kinesin family member 23 (KIF23). Therapeutic targeting of HCC, using pan-TEAD inhibitors or the combination of a statin with sorafenib or anti-programmed cell death protein 1, decreased tumor growth. CONCLUSIONS: Our results suggest the cholesterol-TAZ-TEAD2-ANLN/KIF23 pathway as a mediator of HCC proliferation and tumor cell-intrinsic therapeutic target that could be synergistically combined with TIME-targeted therapies.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Factores de Transcripción de Dominio TEA , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Microambiente Tumoral , Proteínas Señalizadoras YAP/metabolismo
4.
Nature ; 610(7931): 366-372, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36198801

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly desmoplastic, aggressive cancer that frequently progresses and spreads by metastasis to the liver1. Cancer-associated fibroblasts, the extracellular matrix and type I collagen (Col I) support2,3 or restrain the progression of PDAC and may impede blood supply and nutrient availability4. The dichotomous role of the stroma in PDAC, and the mechanisms through which it influences patient survival and enables desmoplastic cancers to escape nutrient limitation, remain poorly understood. Here we show that matrix-metalloprotease-cleaved Col I (cCol I) and intact Col I (iCol I) exert opposing effects on PDAC bioenergetics, macropinocytosis, tumour growth and metastasis. Whereas cCol I activates discoidin domain receptor 1 (DDR1)-NF-κB-p62-NRF2 signalling to promote the growth of PDAC, iCol I triggers the degradation of DDR1 and restrains the growth of PDAC. Patients whose tumours are enriched for iCol I and express low levels of DDR1 and NRF2 have improved median survival compared to those whose tumours have high levels of cCol I, DDR1 and NRF2. Inhibition of the DDR1-stimulated expression of NF-κB or mitochondrial biogenesis blocks tumorigenesis in wild-type mice, but not in mice that express MMP-resistant Col I. The diverse effects of the tumour stroma on the growth and metastasis of PDAC and on the survival of patients are mediated through the Col I-DDR1-NF-κB-NRF2 mitochondrial biogenesis pathway, and targeting components of this pathway could provide therapeutic opportunities.


Asunto(s)
Carcinoma Ductal Pancreático , Colágeno Tipo I , Receptor con Dominio Discoidina 1 , Transducción de Señal , Animales , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Colágeno Tipo I/metabolismo , Receptor con Dominio Discoidina 1/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Ratones , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Tasa de Supervivencia
5.
Nature ; 610(7931): 356-365, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36198802

RESUMEN

Hepatocellular carcinoma (HCC), the fourth leading cause of cancer mortality worldwide, develops almost exclusively in patients with chronic liver disease and advanced fibrosis1,2. Here we interrogated functions of hepatic stellate cells (HSCs), the main source of liver fibroblasts3, during hepatocarcinogenesis. Genetic depletion, activation or inhibition of HSCs in mouse models of HCC revealed their overall tumour-promoting role. HSCs were enriched in the preneoplastic environment, where they closely interacted with hepatocytes and modulated hepatocarcinogenesis by regulating hepatocyte proliferation and death. Analyses of mouse and human HSC subpopulations by single-cell RNA sequencing together with genetic ablation of subpopulation-enriched mediators revealed dual functions of HSCs in hepatocarcinogenesis. Hepatocyte growth factor, enriched in quiescent and cytokine-producing HSCs, protected against hepatocyte death and HCC development. By contrast, type I collagen, enriched in activated myofibroblastic HSCs, promoted proliferation and tumour development through increased stiffness and TAZ activation in pretumoural hepatocytes and through activation of discoidin domain receptor 1 in established tumours. An increased HSC imbalance between cytokine-producing HSCs and myofibroblastic HSCs during liver disease progression was associated with increased HCC risk in patients. In summary, the dynamic shift in HSC subpopulations and their mediators during chronic liver disease is associated with a switch from HCC protection to HCC promotion.


Asunto(s)
Carcinogénesis , Carcinoma Hepatocelular , Células Estrelladas Hepáticas , Neoplasias Hepáticas , Animales , Carcinogénesis/patología , Carcinoma Hepatocelular/patología , Proliferación Celular , Colágeno Tipo I/metabolismo , Receptor con Dominio Discoidina 1/metabolismo , Progresión de la Enfermedad , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Factor de Crecimiento de Hepatocito/metabolismo , Hepatocitos , Humanos , Cirrosis Hepática/complicaciones , Neoplasias Hepáticas/patología , Ratones , Miofibroblastos/patología
6.
Nat Metab ; 4(10): 1225-1226, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36192600
7.
Hepatol Commun ; 6(10): 2781-2797, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35945902

RESUMEN

Liver fibrosis is an aberrant wound healing response that results from chronic injury and is mediated by hepatocellular death and activation of hepatic stellate cells (HSCs). While induction of oxidative stress is well established in fibrotic livers, there is limited information on stress-mediated mechanisms of HSC activation. Cellular stress triggers an adaptive defense mechanism via master protein homeostasis regulator, heat shock factor 1 (HSF1), which induces heat shock proteins to respond to proteotoxic stress. Although the importance of HSF1 in restoring cellular homeostasis is well-established, its potential role in liver fibrosis is unknown. Here, we show that HSF1 messenger RNA is induced in human cirrhotic and murine fibrotic livers. Hepatocytes exhibit nuclear HSF1, whereas stellate cells expressing alpha smooth muscle actin do not express nuclear HSF1 in human cirrhosis. Interestingly, despite nuclear HSF1, murine fibrotic livers did not show induction of HSF1 DNA binding activity compared with controls. HSF1-deficient mice exhibit augmented HSC activation and fibrosis despite limited pro-inflammatory cytokine response and display delayed fibrosis resolution. Stellate cell and hepatocyte-specific HSF1 knockout mice exhibit higher induction of profibrogenic response, suggesting an important role for HSF1 in HSC activation and fibrosis. Stable expression of dominant negative HSF1 promotes fibrogenic activation of HSCs. Overactivation of HSF1 decreased phosphorylation of JNK and prevented HSC activation, supporting a protective role for HSF1. Our findings identify an unconventional role for HSF1 in liver fibrosis. Conclusion: Our results show that deficiency of HSF1 is associated with exacerbated HSC activation promoting liver fibrosis, whereas activation of HSF1 prevents profibrogenic HSC activation.


Asunto(s)
Actinas , Factores de Transcripción del Choque Térmico/metabolismo , Células Estrelladas Hepáticas , Actinas/genética , Animales , Citocinas/metabolismo , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Células Estrelladas Hepáticas/metabolismo , Humanos , Cirrosis Hepática/genética , Ratones , Ratones Noqueados , ARN Mensajero/metabolismo
8.
Sci Transl Med ; 14(639): eabe5795, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35385339

RESUMEN

Fibrosis contributes to ~45% of deaths in western countries. In chronic liver disease, fibrosis is a major factor determining outcomes, but efficient antifibrotic therapies are lacking. Although platelet-derived growth factor and transforming growth factor-ß constitute key fibrogenic mediators, they do not account for the well-established link between cell death and fibrosis in the liver. Here, we hypothesized that damage-associated molecular patterns (DAMPs) may link epithelial cell death to fibrogenesis in the injured liver. DAMP receptor screening identified purinergic receptor P2Y14 among several candidates as highly enriched in hepatic stellate cells (HSCs), the main fibrogenic cell type of the liver. Conversely, P2Y14 ligands uridine 5'-diphosphate (UDP)-glucose and UDP-galactose were enriched in hepatocytes and were released upon different modes of cell death. Accordingly, ligand-receptor interaction analysis that combined proteomic and single-cell RNA sequencing data revealed P2Y14 ligands and P2Y14 receptor as a link between dying cells and HSCs, respectively. Treatment with P2Y14 ligands or coculture with dying hepatocytes promoted HSC activation in a P2Y14-dependent manner. P2Y14 ligands activated extracellular signal-regulated kinase (ERK) and Yes-associated protein (YAP) signaling in HSCs, resulting in ERK-dependent HSC activation. Global and HSC-selective P2Y14 deficiency attenuated liver fibrosis in multiple mouse models of liver injury. Functional expression of P2Y14 was confirmed in healthy and diseased human liver and human HSCs. In conclusion, P2Y14 ligands and their receptor constitute a profibrogenic DAMP pathway that directly links cell death to fibrogenesis.


Asunto(s)
Células Estrelladas Hepáticas , Hepatocitos , Receptores Purinérgicos P2Y , Receptores Purinérgicos P2 , Animales , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células Estrelladas Hepáticas/metabolismo , Hepatocitos/metabolismo , Humanos , Ligandos , Hígado/metabolismo , Cirrosis Hepática/patología , Ratones , Proteómica , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Análisis de la Célula Individual , Uridina Difosfato/metabolismo , Proteínas Señalizadoras YAP
9.
J Hepatol ; 77(1): 15-28, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35167910

RESUMEN

BACKGROUND & AIMS: The pathogenesis of liver fibrosis requires activation of hepatic stellate cells (HSCs); once activated, HSCs lose intracellular fatty acids but the role of fatty acid oxidation and carnitine palmitoyltransferase 1A (CPT1A) in this process remains largely unexplored. METHODS: CPT1A was found in HSCs of patients with fibrosis. Pharmacological and genetic manipulation of CPT1A were performed in human HSC cell lines and primary HCSs. Finally, we induced fibrosis in mice lacking CPT1A specifically in HSCs. RESULTS: Herein, we show that CPT1A expression is elevated in HSCs of patients with non-alcoholic steatohepatitis, showing a positive correlation with the fibrosis score. This was corroborated in rodents with fibrosis, as well as in primary human HSCs and LX-2 cells activated by transforming growth factor ß1 (TGFß1) and fetal bovine serum (FBS). Furthermore, both pharmacological and genetic silencing of CPT1A prevent TGFß1- and FBS-induced HSC activation by reducing mitochondrial activity. The overexpression of CPT1A, induced by saturated fatty acids and reactive oxygen species, triggers mitochondrial activity and the expression of fibrogenic markers. Finally, mice lacking CPT1A specifically in HSCs are protected against fibrosis induced by a choline-deficient high-fat diet, a methionine- and choline-deficient diet, or treatment with carbon tetrachloride. CONCLUSIONS: These results indicate that CPT1A plays a critical role in the activation of HSCs and is implicated in the development of liver fibrosis, making it a potentially actionable target for fibrosis treatment. LAY SUMMARY: We show that the enzyme carnitine palmitoyltransferase 1A (CPT1A) is elevated in hepatic stellate cells (HSCs) in patients with fibrosis and mouse models of fibrosis, and that CPT1A induces the activation of these cells. Inhibition of CPT1A ameliorates fibrosis by preventing the activation of HSCs.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Células Estrelladas Hepáticas , Animales , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Colina , Ácidos Grasos/metabolismo , Fibrosis , Células Estrelladas Hepáticas/metabolismo , Humanos , Hígado/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/prevención & control , Ratones
12.
Nature ; 595(7865): 114-119, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33915568

RESUMEN

Respiratory failure is the leading cause of death in patients with severe SARS-CoV-2 infection1,2, but the host response at the lung tissue level is poorly understood. Here we performed single-nucleus RNA sequencing of about 116,000 nuclei from the lungs of nineteen individuals who died of COVID-19 and underwent rapid autopsy and seven control individuals. Integrated analyses identified substantial alterations in cellular composition, transcriptional cell states, and cell-to-cell interactions, thereby providing insight into the biology of lethal COVID-19. The lungs from individuals with COVID-19 were highly inflamed, with dense infiltration of aberrantly activated monocyte-derived macrophages and alveolar macrophages, but had impaired T cell responses. Monocyte/macrophage-derived interleukin-1ß and epithelial cell-derived interleukin-6 were unique features of SARS-CoV-2 infection compared to other viral and bacterial causes of pneumonia. Alveolar type 2 cells adopted an inflammation-associated transient progenitor cell state and failed to undergo full transition into alveolar type 1 cells, resulting in impaired lung regeneration. Furthermore, we identified expansion of recently described CTHRC1+ pathological fibroblasts3 contributing to rapidly ensuing pulmonary fibrosis in COVID-19. Inference of protein activity and ligand-receptor interactions identified putative drug targets to disrupt deleterious circuits. This atlas enables the dissection of lethal COVID-19, may inform our understanding of long-term complications of COVID-19 survivors, and provides an important resource for therapeutic development.


Asunto(s)
COVID-19/patología , COVID-19/virología , Pulmón/patología , SARS-CoV-2/patogenicidad , Análisis de la Célula Individual , Anciano , Anciano de 80 o más Años , Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/virología , Atlas como Asunto , Autopsia , COVID-19/inmunología , Estudios de Casos y Controles , Femenino , Fibroblastos/patología , Fibrosis/patología , Fibrosis/virología , Humanos , Inflamación/patología , Inflamación/virología , Macrófagos/patología , Macrófagos/virología , Macrófagos Alveolares/patología , Macrófagos Alveolares/virología , Masculino , Persona de Mediana Edad , Células Plasmáticas/inmunología , Linfocitos T/inmunología
13.
Cancer Cell ; 39(6): 866-882.e11, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-33930309

RESUMEN

Cancer-associated fibroblasts (CAF) are a poorly characterized cell population in the context of liver cancer. Our study investigates CAF functions in intrahepatic cholangiocarcinoma (ICC), a highly desmoplastic liver tumor. Genetic tracing, single-cell RNA sequencing, and ligand-receptor analyses uncovered hepatic stellate cells (HSC) as the main source of CAF and HSC-derived CAF as the dominant population interacting with tumor cells. In mice, CAF promotes ICC progression, as revealed by HSC-selective CAF depletion. In patients, a high panCAF signature is associated with decreased survival and increased recurrence. Single-cell RNA sequencing segregates CAF into inflammatory and growth factor-enriched (iCAF) and myofibroblastic (myCAF) subpopulations, displaying distinct ligand-receptor interactions. myCAF-expressed hyaluronan synthase 2, but not type I collagen, promotes ICC. iCAF-expressed hepatocyte growth factor enhances ICC growth via tumor-expressed MET, thus directly linking CAF to tumor cells. In summary, our data demonstrate promotion of desmoplastic ICC growth by therapeutically targetable CAF subtype-specific mediators, but not by type I collagen.


Asunto(s)
Neoplasias de los Conductos Biliares/patología , Fibroblastos Asociados al Cáncer/patología , Colangiocarcinoma/patología , Anciano , Animales , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Conductos Biliares Intrahepáticos/patología , Fibroblastos Asociados al Cáncer/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colágeno Tipo I/metabolismo , Femenino , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/patología , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Hialuronano Sintasas/genética , Hialuronano Sintasas/metabolismo , Ácido Hialurónico/metabolismo , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-met/metabolismo , Microambiente Tumoral
14.
J Clin Invest ; 131(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33905375

RESUMEN

Cancer-associated fibroblasts (CAF) may exert tumor-promoting and tumor-suppressive functions, but the mechanisms underlying these opposing effects remain elusive. Here, we sought to understand these potentially opposing functions by interrogating functional relationships among CAF subtypes, their mediators, desmoplasia, and tumor growth in a wide range of tumor types metastasizing to the liver, the most common organ site for metastasis. Depletion of hepatic stellate cells (HSC), which represented the main source of CAF in mice and patients in our study, or depletion of all CAF decreased tumor growth and mortality in desmoplastic colorectal and pancreatic metastasis but not in nondesmoplastic metastatic tumors. Single-cell RNA-Seq in conjunction with CellPhoneDB ligand-receptor analysis, as well as studies in immune cell-depleted and HSC-selective knockout mice, uncovered direct CAF-tumor interactions as a tumor-promoting mechanism, mediated by myofibroblastic CAF-secreted (myCAF-secreted) hyaluronan and inflammatory CAF-secreted (iCAF-secreted) HGF. These effects were opposed by myCAF-expressed type I collagen, which suppressed tumor growth by mechanically restraining tumor spread, overriding its own stiffness-induced mechanosignals. In summary, mechanical restriction by type I collagen opposes the overall tumor-promoting effects of CAF, thus providing a mechanistic explanation for their dual functions in cancer. Therapeutic targeting of tumor-promoting CAF mediators while preserving type I collagen may convert CAF from tumor promoting to tumor restricting.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Colágeno Tipo I/metabolismo , Células Estrelladas Hepáticas/metabolismo , Neoplasias Hepáticas Experimentales/metabolismo , Mecanotransducción Celular , Animales , Fibroblastos Asociados al Cáncer/patología , Línea Celular Tumoral , Colágeno Tipo I/genética , Células Estrelladas Hepáticas/patología , Humanos , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/patología , Ratones Noqueados , Metástasis de la Neoplasia
17.
Hepatol Commun ; 3(9): 1221-1234, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31497743

RESUMEN

Nonalcoholic steatohepatitis (NASH) is emerging as a major public health issue and is associated with significant liver-related morbidity and mortality. At present, there are no approved drug therapies for NASH. The transcriptional coactivator with PDZ-binding motif (TAZ; encoded by WW domain-containing transcription regulator 1 [WWTR1]) is up-regulated in hepatocytes in NASH liver from humans and has been shown to causally promote inflammation and fibrosis in mouse models of NASH. As a preclinical test of targeting hepatocyte TAZ to treat NASH, we injected stabilized TAZ small interfering RNA (siRNA) bearing the hepatocyte-specific ligand N-acetylgalactosamine (GalNAc-siTAZ) into mice with dietary-induced NASH. As a preventative regimen, GalNAc-siTAZ inhibited inflammation, hepatocellular injury, and the expression of profibrogenic mediators, accompanied by decreased progression from steatosis to NASH. When administered to mice with established NASH, GalNAc-siTAZ partially reversed hepatic inflammation, injury, and fibrosis. Conclusion: Hepatocyte-targeted siTAZ is potentially a novel and clinically feasible treatment for NASH.

18.
Semin Liver Dis ; 39(3): 315-333, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31226725

RESUMEN

Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide. A unique feature of liver cancer is its close association with liver fibrosis. About 90% of HCCs develop in advanced liver fibrosis or cirrhosis, suggesting an important role for the fibrotic microenvironment in driving HCC development. Here, the authors will discuss functional contributions of liver fibrosis to the development of HCC, focusing on mechanisms through which fibrosis may promote HCC development such as hepatic stellate cell-derived extracellular matrix, growth factors, and cytokines, stiffness-induced signaling pathways, and immunosuppression. Better understanding of these factors in HCC development and progression may provide the basis for novel stromal-based therapies for tumor prevention or therapy.


Asunto(s)
Carcinogénesis , Carcinoma Hepatocelular/patología , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Cirrosis Hepática/patología , Neoplasias Hepáticas/patología , Lesiones Precancerosas/patología , Animales , Carcinoma Hepatocelular/fisiopatología , Citocinas/metabolismo , Elasticidad , Células Estrelladas Hepáticas , Humanos , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Cirrosis Hepática/fisiopatología , Neoplasias Hepáticas/fisiopatología , Mecanotransducción Celular , Neovascularización Patológica/metabolismo , Lesiones Precancerosas/fisiopatología , Microambiente Tumoral
19.
Cell Death Dis ; 10(1): 12, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30622241

RESUMEN

The protein kinase RIPK1 plays a crucial role at the crossroad of stress-induced signaling pathways that affects cell's decision to live or die. The present study aimed to define the role of RIPK1 in hepatocytes during fulminant viral hepatitis, a worldwide syndrome mainly observed in hepatitis B virus (HBV) infected patients. Mice deficient for RIPK1, specifically in liver parenchymal cells (Ripk1LPC-KO) and their wild-type littermates (Ripk1fl/fl), were challenged by either the murine hepatitis virus type 3 (MHV3) or poly I:C, a synthetic analog of double-stranded RNA mimicking viral pathogen-associated molecular pattern. Ripk1LPC-KO mice developed more severe symptoms at early stage of the MHV3-induced fulminant hepatitis. Similarly, administration of poly I:C only triggered increase of systemic transaminases in Ripk1LPC-KO mice, reflecting liver damage through induced apoptosis as illustrated by cleaved-caspase 3 labeling of liver tissue sections. Neutralization of TNF-α or prior depletion of macrophages were able to prevent the appearance of apoptosis of hepatocytes in poly I:C-challenged Ripk1LPC-KO mice. Moreover, poly I:C never induced direct hepatocyte death in primary culture whatever the murine genotype, while it always stimulated an anti-viral response. Our investigations demonstrated that RIPK1 protects hepatocytes from TNF-α secreted from macrophages during viral induced fulminant hepatitis. These data emphasize the potential worsening risks of an HBV infection in people with polymorphism or homozygous amorphic mutations already described for the RIPK1 gene.


Asunto(s)
Hepatitis Viral Animal/metabolismo , Hepatocitos/metabolismo , Hepatopatías/metabolismo , Necrosis Hepática Masiva/metabolismo , Virus de la Hepatitis Murina , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Células Cultivadas , Ácido Clodrónico/farmacología , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Hepatocitos/efectos de los fármacos , Macrófagos del Hígado/efectos de los fármacos , Macrófagos del Hígado/metabolismo , Hepatopatías/virología , Necrosis Hepática Masiva/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Poli I-C/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
20.
FASEB Bioadv ; 1(4): 227-245, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32123829

RESUMEN

Alarmins and damage-associated molecular patterns (DAMPs) are powerful inflammatory mediators, capable of initiating and maintaining sterile inflammation during acute or chronic tissue injury. Recent evidence suggests that alarmins/DAMPs may also trigger tissue regeneration and repair, suggesting a potential contribution to tissue fibrogenesis. High mobility group B1 (HMGB1), a bona fide alarmin/DAMP, may be released passively by necrotic cells or actively secreted by innate immune cells. Macrophages can release large amounts of HMGB1 and play a key role in wound healing and regeneration processes. Here, we hypothesized that macrophages may be a key source of HMGB1 and thereby contribute to wound healing and fibrogenesis. Surprisingly, cell-specific deletion approaches, demonstrated that macrophage-derived HMGB1 is not involved in tissue fibrogenesis in multiple organs with different underlying pathologies. Compared to control HMGB1Flox mice, mice with macrophage-specific HMGB1 deletion (HMGB1ΔMac) do not display any modification of fibrogenesis in the liver after CCL4 or thioacetamide treatment and bile duct ligation; in the kidney following unilateral ureter obstruction; and in the heart after transverse aortic constriction. Of note, even under thermoneutral housing, known to exacerbate inflammation and fibrosis features, HMGB1ΔMac mice do not show impairment of fibrogenesis. In conclusion, our study clearly establishes that macrophage-derived HMGB1 does not contribute to tissue repair and fibrogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...