Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 270: 110852, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32501239

RESUMEN

U.S. municipal wastewater contains approximately 160 trillion Btu/y of influent chemical energy, but very little is recovered and utilized nationwide. Hydrothermal liquefaction (HTL) is a thermochemical process that converts biomass into a biocrude intermediate that can be upgraded to a variety of liquid fuels. HTL provides an opportunity to enhance energy recovery at wastewater treatment plants by transforming underutilized municipal wastewater solids into a renewable, cost-effective feedstock for transportation biofuels. In this study, we estimate total national economic sludge feedstock supply by performing discounted cash flow analyses at >15,000 U.S. wastewater treatment facilities to assess the net present value of 30-year HTL investments, with comparison to wider adoption of anaerobic digestion (AD). This analysis is the first to model HTL technology deployment across the real-world fleet of wastewater treatment plants. Analyses indicate treatment facilities ≥17 ML/d (4.6 million gal/d) could supply 9.77 Tg/y of dry solids feedstock to economically produce 3.67 GL/y of biocrude intermediate, thereby increasing energy, environmental, and financial sustainability of sludge treatment while reducing disposal costs and operational and environmental risk.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Biocombustibles/análisis , Análisis Costo-Beneficio , Eliminación de Residuos Líquidos
2.
Sustainability ; 10(10): 1-19, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30607262

RESUMEN

To limit effluent impacts on eutrophication in receiving waterbodies, a small community water resource recovery facility (WRRF) upgraded their conventional activated sludge treatment process for biological nutrient removal, and considered enhanced primary settling and anaerobic digestion (AD) with co-digestion of high strength organic waste (HSOW). The community initiated the resource recovery hub concept with the intention of converting an energy-consuming wastewater treatment plant into a facility that generates energy and nutrients and reuses water. We applied life cycle assessment and life cycle cost assessment to evaluate the net impact of the potential conversion. The upgraded WRRF reduced eutrophication impacts by 40 percent compared to the legacy system. Other environmental impacts such as global climate change potential (GCCP) and cumulative energy demand (CED) were strongly affected by AD and composting assumptions. The scenario analysis showed that HSOW co-digestion with energy recovery can lead to reductions in GCCP and CED of 7 and 108 percent, respectively, for the upgraded WRRF (high feedstock-base AD performance scenarios) relative to the legacy system. The cost analysis showed that using the full digester capacity and achieving high digester performance can reduce the life cycle cost of WRRF upgrades by 15 percent over a 30-year period.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA