Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antibiotics (Basel) ; 13(5)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38786172

RESUMEN

This research focuses on assessing the synergistic effects of Mexican oregano (Lippia graveolens) essential oil or carvacrol when combined with the antibiotic imipenem, aiming to reduce the pathogenic viability and virulence of Acinetobacter baumannii and Pseudomonas aeruginosa. The study highlighted the synergistic effect of combining L. graveolens essential oil or carvacrol with imipenem, significantly reducing the required doses for inhibiting bacterial growth. The combination treatments drastically lowered the necessary imipenem doses, highlighting a potent enhancement in efficacy against A. baumannii and P. aeruginosa. For example, the minimum inhibitory concentrations (MIC) for the essential oil/imipenem combinations were notably low, at 0.03/0.000023 mg/mL for A. baumannii and 0.0073/0.000023 mg/mL for P. aeruginosa. Similarly, the combinations significantly inhibited biofilm formation at lower concentrations than when the components were used individually, demonstrating the strategic advantage of this approach in combating antibiotic resistance. For OXA-51, imipenem showed a relatively stable interaction during 30 ns of dynamic simulation of their interaction, indicating changes (<2 nm) in ligand positioning during this period. Carvacrol exhibited similar fluctuations to imipenem, suggesting its potential inhibition efficacy, while thymol showed significant variability, particularly at >10 ns, suggesting potential instability. With IMP-1, imipenem also displayed very stable interactions during 38 ns and demonstrated notable movement and positioning changes within the active site, indicating a more dynamic interaction. In contrast, carvacrol and thymol maintained their position within the active site only ~20 and ~15 ns, respectively. These results highlight the effectiveness of combining L. graveolens essential oil and carvacrol with imipenem in tackling the difficult-to-treat pathogens A. baumannii and P. aeruginosa.

2.
Antioxidants (Basel) ; 12(4)2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37107236

RESUMEN

This review explores the antioxidant properties of oak (Quercus sp.) extracts and their potential application in preventing oxidative rancidity in food products. Oxidative rancidity negatively impacts food quality, causing changes in color, odor, and flavor and reducing the shelf life of products. The use of natural antioxidants from plant sources, such as oak extracts, has gained increasing interest due to potential health concerns associated with synthetic antioxidants. Oak extracts contain various antioxidant compounds, including phenolic acids, flavonoids, and tannins, which contribute to their antioxidative capacity. This review discusses the chemical composition of oak extracts, their antioxidative activity in different food systems, and the safety and potential challenges related to their application in food preservation. The potential benefits and limitations of using oak extracts as an alternative to synthetic antioxidants are highlighted, and future research directions to optimize their application and determine their safety for human consumption are suggested.

3.
Antibiotics (Basel) ; 11(12)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36551436

RESUMEN

Antibiotic resistance is a serious global threat, and the misuse of antibiotics is considered its main cause. It is characterized by the expression of bacterial defense mechanisms, e.g., ß-lactamases, expulsion pumps, and biofilm development. Acinetobacter baumannii and Pseudomonas aeruginosa are antibiotic-resistant species that cause high morbidity and mortality. Several alternatives are proposed to defeat antibiotic resistance, including antimicrobial peptides, bacteriophages, and plant compounds. Terpenes from different plant essential oils have proven antimicrobial action against pathogenic bacteria, and evidence is being generated about their effect against antibiotic-resistant species. That is the case for oregano essential oil (Lippia graveolens), whose antibacterial effect is widely attributed to carvacrol, its main component; however, minor constituents could have an important contribution. The analyzed evidence reveals that most antibacterial evaluations have been performed on single species; however, it is necessary to analyze their activity against multispecies systems. Hence, another alternative is using plant compounds to inactivate hydrolytic enzymes and biofilms to potentiate antibiotics' effects. Despite the promising results of plant terpenes, more extensive and deep mechanistic studies are needed involving antibiotic-resistant multispecies to understand their full potential against this problem.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...