Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 11: 1190371, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37284244

RESUMEN

Introduction: Currently, there are no non-surgical FDA-approved biological approaches to accelerate fracture repair. Injectable therapies designed to stimulate bone healing represent an exciting alternative to surgically implanted biologics, however, the translation of effective osteoinductive therapies remains challenging due to the need for safe and effective drug delivery. Hydrogel-based microparticle platforms may be a clinically relevant solution to create controlled and localized drug delivery to treat bone fractures. Here, we describe poly (ethylene glycol) dimethacrylate (PEGDMA)-based microparticles, in the shape of microrods, loaded with beta nerve growth factor (ß-NGF) for the purpose of promoting fracture repair. Methods: Herein, PEGDMA microrods were fabricated through photolithography. PEGDMA microrods were loaded with ß-NGF and in vitro release was examined. Subsequently, bioactivity assays were evaluated in vitro using the TF-1 tyrosine receptor kinase A (Trk-A) expressing cell line. Finally, in vivo studies using our well-established murine tibia fracture model were performed and a single injection of the ß-NGF loaded PEGDMA microrods, non-loaded PEGDMA microrods, or soluble ß-NGF was administered to assess the extent of fracture healing using Micro-computed tomography (µCT) and histomorphometry. Results: In vitro release studies showed there is significant retention of protein within the polymer matrix over 168 hours through physiochemical interactions. Bioactivity of protein post-loading was confirmed with the TF-1 cell line. In vivo studies using our murine tibia fracture model show that PEGDMA microrods injected at the site of fracture remained adjacent to the callus for over 7 days. Importantly, a single injection of ß-NGF loaded PEGDMA microrods resulted in improved fracture healing as indicated by a significant increase in the percent bone in the fracture callus, trabecular connective density, and bone mineral density relative to soluble ß-NGF control indicating improved drug retention within the tissue. The concomitant decrease in cartilage fraction supports our prior work showing that ß-NGF promotes endochondral conversion of cartilage to bone to accelerate healing. Discussion: We demonstrate a novel and translational method wherein ß-NGF can be encapsulated within PEGDMA microrods for local delivery and that ß-NGF bioactivity is maintained resulting in improved bone fracture repair.

2.
Sci Adv ; 9(3): eade8039, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36662850

RESUMEN

Bacterial biofilm infections, particularly those of Pseudomonas aeruginosa (PA), have high rates of antimicrobial tolerance and are commonly found in chronic wound and cystic fibrosis lung infections. Combination therapeutics that act synergistically can overcome antimicrobial tolerance; however, the delivery of multiple therapeutics at relevant dosages remains a challenge. We therefore developed a nanoscale drug carrier for antimicrobial codelivery by combining approaches from polyelectrolyte nanocomplex (NC) formation and layer-by-layer electrostatic self-assembly. This strategy led to NC drug carriers loaded with tobramycin antibiotics and antimicrobial silver nanoparticles (AgTob-NCs). AgTob-NCs displayed synergistic enhancements in antimicrobial activity against both planktonic and biofilm PA cultures, with positively charged NCs outperforming negatively charged formulations. NCs were evaluated in mouse models of lung infection, leading to reduced bacterial burden and improved survival outcomes. This approach therefore shows promise for nanoscale therapeutic codelivery to treat recalcitrant bacterial infections.


Asunto(s)
Nanopartículas del Metal , Neumonía , Infecciones por Pseudomonas , Animales , Ratones , Polielectrolitos , Infecciones por Pseudomonas/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Plata , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Neumonía/tratamiento farmacológico , Portadores de Fármacos/uso terapéutico , Biopelículas , Pseudomonas aeruginosa , Pulmón
3.
ACS Biomater Sci Eng ; 9(6): 2891-2901, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-33914503

RESUMEN

Oral protein delivery technologies often depend on encapsulating or enclosing the protein cargo to protect it against pH-driven degradation in the stomach or enzymatic digestion in the small intestine. An emergent methodology is to encapsulate therapeutics in microscale, asymmetric, planar microparticles, referred to as microdevices. Previous work has shown that, compared to spherical particles, planar microdevices have longer residence times in the GI tract, but it remains unclear how specific design choices (e.g., material selection, particle diameter) impact microdevice behavior in vivo. Recent advances in microdevice fabrication through picoliter printing have expanded the range of device sizes that can be fabricated in a rapid manner. However, relatively little work has explored how device size governs their behavior in the intestinal environment. In this study, we probe the impact of geometry of planar microdevices on their transit and accumulation in the murine GI tract. Additionally, we present a strategy to label, image, and quantify these distributions in intact tissue in a continuous manner, enabling a more detailed understanding of device distribution and transit kinetics than previously possible. We show that smaller particles (194.6 ± 7 µm.diameter) tend to empty from the stomach faster than midsize (293.2 ± 7 µm.diameter) and larger devices (440.9 ± 9 µm.diameter) and that larger devices distribute more broadly in the GI tract and exit slower than other geometries. In general, we observed an inverse correlation between device diameter and GI transit rate. These results inform the future design of drug delivery systems, using particle geometry as an engineering design parameter to control device accumulation and distribution in the GI tract. Additionally, our image analysis process provides greater insight into the tissue level distribution and transit of particle populations. Using this technique, we demonstrate that microdevices act and translocate independently, as opposed to transiting in one homogeneous mass, meaning that target sites will likely be exposed to devices multiple times over the course of hours post administration. This imaging technique and associated findings enable data-informed design of future particle delivery systems, allowing orthogonal control of transit and distribution kinetics in vivo independent of material and cargo selection.


Asunto(s)
Sistemas de Liberación de Medicamentos , Tracto Gastrointestinal , Ratones , Animales , Sistemas de Liberación de Medicamentos/métodos
4.
Adv Nanobiomed Res ; 1(5)2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33997858

RESUMEN

Polymeric particles with intricate morphologies and properties have been developed based on bioinspired designs for applications in regenerative medicine, tissue engineering, and drug delivery. However, the fabrication of particles with asymmetric functionalities remains a challenge. Janus polymeric particles are an emerging class of material with asymmetric functionalities; however, they are predominantly spherical in morphology, made from non-biocompatible materials, and made using specialized fabrication techniques. We therefore set out to fabricate nonspherical Janus particles inspired by high aspect ratio filamentous bacteriophage using polycaprolactone polymers and standard methods. Janus high aspect ratio particles (J-HARPs) were fabricated with a nanotemplating technique to create branching morphologies selectively at one edge of the particle. J-HARPs were fabricated with maleimide handles and modified with biomolecules such as proteins and biotin. Regioselective modification was observed at the tips of J-HARPs, likely owing to the increased surface area of the branching regions. Biotinylated J-HARPs demonstrated cancer cell biotin receptor targeting, as well as directional crosslinking with spherical particles via biotin-streptavidin interactions. Lastly, maleimide J-HARPs were functionalized during templating to contain amines exclusively at the branching regions and were dual-labeled orthogonally, demonstrating spatially separated bioconjugation. Thus, J-HARPs represent a new class of bioinspired Janus material with excellent regional control over biofunctionalization.

5.
Adv Funct Mater ; 30(48)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33250685

RESUMEN

Injectable colloids that self-assemble into three-dimensional networks are promising materials for applications in regenerative engineering, as they create open systems for cellular infiltration, interaction, and activation. However, most injectable colloids have spherical morphologies, which lack the high material-biology contact areas afforded by higher aspect ratio materials. To address this need, injectable high aspect ratio particles (HARPs) were developed that form three-dimensional networks to enhance scaffold assembly dynamics and cellular interactions. HARPs were functionalized for tunable surface charge through layer-by-layer electrostatic assembly. Positively charged Chitosan-HARPs had improved particle suspension dynamics when compared to spherical particles or negatively charged HARPs. Chit-HARPs were used to improve the suspension dynamics and viability of MIN6 cells in three-dimensional networks. When combined with negatively charged gelatin microsphere (GelMS) porogens, Chit-HARPs reduced GelMS sedimentation and increased overall network suspension, due to a combination of HARP network formation and electrostatic interactions. Lastly, HARPs were functionalized with fibroblast growth factor 2 (FGF2) to highlight their use for growth factor delivery. FGF2-HARPs increased fibroblast proliferation through a combination of 3D scaffold assembly and growth factor delivery. Taken together, these studies demonstrate the development and diverse uses of high aspect ratio particles as tunable injectable scaffolds for applications in regenerative engineering.

6.
Adv Drug Deliv Rev ; 157: 37-62, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32707147

RESUMEN

Oral administration is a pillar of the pharmaceutical industry and yet it remains challenging to administer hydrophilic therapeutics by the oral route. Smart and controlled oral drug delivery could bypass the physiological barriers that limit the oral delivery of these therapeutics. Micro- and nanoscale technologies, with an unprecedented ability to create, control, and measure micro- or nanoenvironments, have found tremendous applications in biology and medicine. In particular, significant advances have been made in using these technologies for oral drug delivery. In this review, we briefly describe biological barriers to oral drug delivery and micro and nanoscale fabrication technologies. Micro and nanoscale drug carriers fabricated using these technologies, including bioadhesives, microparticles, micropatches, and nanoparticles, are described. Other applications of micro and nanoscale technologies are discussed, including fabrication of devices and tissue engineering models to precisely control or assess oral drug delivery in vivo and in vitro, respectively. Strategies to advance translation of micro and nanotechnologies into clinical trials for oral drug delivery are mentioned. Finally, challenges and future prospects on further integration of micro and nanoscale technologies with oral drug delivery systems are highlighted.


Asunto(s)
Sistemas de Liberación de Medicamentos , Microesferas , Nanopartículas , Administración Oral , Animales , Portadores de Fármacos/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Microtecnología/métodos , Nanotecnología/métodos , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/química
7.
Adv Drug Deliv Rev ; 167: 89-108, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32535139

RESUMEN

Micro and nanoscale drug carriers must navigate through a plethora of dynamic biological systems prior to reaching their tissue or disease targets. The biological obstacles to drug delivery come in many forms and include tissue barriers, mucus and bacterial biofilm hydrogels, the immune system, and cellular uptake and intracellular trafficking. The biointerface of drug carriers influences how these carriers navigate and overcome biological barriers for successful drug delivery. In this review, we examine how key material design parameters lead to dynamic biointerfaces and improved drug delivery across biological barriers. We provide a brief overview of approaches used to engineer key physicochemical properties of drug carriers, such as morphology, surface chemistry, and topography, as well as the development of dynamic responsive materials for barrier navigation. We then discuss essential biological barriers and how biointerface engineering can enable drug carriers to better navigate and overcome these barriers to drug delivery.


Asunto(s)
Ingeniería Biomédica/métodos , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Nanopartículas/química , Barrera Hematoencefálica/metabolismo , Química Farmacéutica , Vías de Administración de Medicamentos , Humanos , Hidrogeles/metabolismo , Moco/metabolismo , Tamaño de la Partícula , Absorción Cutánea/fisiología , Propiedades de Superficie , Uniones Estrechas/metabolismo
8.
Angew Chem Int Ed Engl ; 58(29): 9948-9953, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31004389

RESUMEN

The development of sensitive and chemically selective MRI contrast agents is imperative for the early detection and diagnosis of many diseases. Conventional responsive contrast agents used in 1 H MRI are impaired by the high abundance of protons in the body. 129 Xe hyperCEST NMR/MRI comprises a highly sensitive complement to traditional 1 H MRI because of its ability to report specific chemical environments. To date, the scope of responsive 129 Xe NMR contrast agents lacks breadth in the specific detection of small molecules, which are often important markers of disease. Herein, we report the synthesis and characterization of a rotaxane-based 129 Xe hyperCEST NMR contrast agent that can be turned on in response to H2 O2 , which is upregulated in several disease states. Added H2 O2 was detected by 129 Xe hyperCEST NMR spectroscopy in the low micromolar range, as well as H2 O2 produced by HEK 293T cells activated with tumor necrosis factor.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Rotaxanos/uso terapéutico
9.
Nanomaterials (Basel) ; 8(12)2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30563038

RESUMEN

Glioblastoma is a particularly challenging cancer, as there are currently limited options for treatment. New delivery routes are being explored, including direct intratumoral injection via convection-enhanced delivery (CED). While promising, convection-enhanced delivery of traditional chemotherapeutics such as doxorubicin (DOX) has seen limited success. Several studies have demonstrated that attaching a drug to polymeric nanoscale materials can improve drug delivery efficacy via CED. We therefore set out to evaluate a panel of morphologically distinct protein nanoparticles for their potential as CED drug delivery vehicles for glioblastoma treatment. The panel consisted of three different virus-like particles (VLPs), MS2 spheres, tobacco mosaic virus (TMV) disks and nanophage filamentous rods modified with DOX. While all three VLPs displayed adequate drug delivery and cell uptake in vitro, increased survival rates were only observed for glioma-bearing mice that were treated via CED with TMV disks and MS2 spheres conjugated to doxorubicin, with TMV-treated mice showing the best response. Importantly, these improved survival rates were observed after only a single VLP⁻DOX CED injection several orders of magnitude smaller than traditional IV doses. Overall, this study underscores the potential of nanoscale chemotherapeutic CED using virus-like particles and illustrates the need for further studies into how the overall morphology of VLPs influences their drug delivery properties.

10.
Curr Opin Chem Biol ; 46: 91-98, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30041103

RESUMEN

Protein immobilization and modification are widely used techniques in the fields of chemical biology and biomaterials science. While covalent strategies based on small molecules are traditionally used, supramolecular chemistry offers numerous useful opportunities for guiding the modification locations on complex protein landscapes and introducing different degrees of reversibility into the products. In this opinion, we highlight recent advances in using supramolecular interactions, particularly host-guest chemistry, for controlling protein modification and immobilization. We discuss supramolecular strategies for protein-conjugate purification and capture, as well as for protein modification via host-guest interactions and metal coordination. Lastly, we address recent advances in utilizing supramolecular interactions to direct covalent protein modification. These examples of supramolecular chemical biology present opportunities to advance a wide range of applications, including proteomics and drug delivery.


Asunto(s)
Materiales Biocompatibles/química , Técnicas de Química Sintética/métodos , Proteínas/química , Animales , Materiales Biocompatibles/síntesis química , Sistemas de Liberación de Medicamentos/métodos , Humanos , Proteínas Inmovilizadas/síntesis química , Proteínas Inmovilizadas/química , Modelos Moleculares , Proteínas/síntesis química
11.
J Am Chem Soc ; 139(28): 9691-9697, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28650616

RESUMEN

Azide-alkyne cycloaddition is a powerful reaction for the formation of bioconjugates. When catalyzed by Cu(I) or strain promotion, this cycloaddition is considered to be a "click" reaction with many applications in chemical biology and materials science. We report a new type of azide-alkyne click chemistry for the synthesis of protein conjugates using cucurbit[6]uril (CB6) supramolecular chemistry. CB6-promoted azide-alkyne cycloaddition has been previously used for the synthesis of rotaxanes but has not been applied to the development of complex bioconjugates. By developing new substrates for CB6 click that do not contain any cross-reactive functional groups and by optimizing reaction conditions, we converted CB6 click chemistry from a rotaxane synthesis tool into a useful bioconjugation technique. Using these new parameters, we synthesized a series of protein conjugates including protein-peptide, protein-DNA, protein-polymer, and protein-drug conjugates. We further demonstrated that CB6 click can be used in conjunction with strain-promoted azide-alkyne cycloaddition to generate distinct bioconjugates in protein mixtures. CB6 click is a promising new reaction for the development of protein conjugates and can be applied toward the synthesis of complex biomaterials for a wide range of applications.


Asunto(s)
Alquinos/química , Azidas/química , Hidrocarburos Aromáticos con Puentes/química , Imidazoles/química , Proteínas/química , Química Clic , Reacción de Cicloadición , Modelos Moleculares , Estructura Molecular , Proteínas/síntesis química
12.
Chem Commun (Camb) ; 53(6): 1076-1079, 2017 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-28044166

RESUMEN

We report a CB6 rotaxane for the 129Xe hyperCEST NMR detection of matrix metalloprotease 2 (MMP-2) activity. MMP-2 is overexpressed in cancer tissue, and hence is a cancer marker. A peptide containing an MMP-2 recognition sequence was incorporated into the rotaxane, synthesized via CB6-promoted click chemistry. Upon cleavage of the rotaxane by MMP-2, CB6 became accessible for 129Xe@CB6 interactions, leading to protease-responsive hyperCEST activation.

13.
Bioconjug Chem ; 27(10): 2480-2485, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27712069

RESUMEN

Current approaches to nanoscale therapeutic delivery rely on the attachment of a drug of interest to a nanomaterial scaffold that is capable of releasing the drug selectively in a tumor environment. One class of nanocarriers receiving significant attention is protein nanomaterials, which are biodegradable and homogeneous in morphology and can be equipped with multiple functional handles for drug attachment. Although most protein-based nanocarriers are spherical in morphology, recent research has revealed that nonspherical nanomaterials may have favorable tumor uptake in comparison to their spherical counterparts. It is therefore important to expand the number of nonspherical protein-based nanocarriers that are available. Herein, we report the development of a self-assembling nanoscale disk derived from a double arginine mutant of recombinantly expressed tobacco mosaic virus coat protein (RR-TMV). RR-TMV disks display highly stable double-disk assembly states. These RR-TMV disks were functionalized with the chemotherapy drug doxorubicin (DOX) and further modified with polyethylene glycol (PEG) for improved solubility. RR-TMVDOX-PEG displayed cytotoxic properties similar to those of DOX alone when incubated with U87MG glioblastoma cells, but unmodified RR-TMV did not cause any cytotoxicity. The RR-TMV disk assembly represents a promising protein-based nanomaterial for applications in drug delivery.

14.
Bioconjug Chem ; 27(8): 1796-801, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27454679

RESUMEN

We have synthesized targeted, selective, and highly sensitive (129)Xe NMR nanoscale biosensors using a spherical MS2 viral capsid, Cryptophane A molecules, and DNA aptamers. The biosensors showed strong binding specificity toward targeted lymphoma cells (Ramos line). Hyperpolarized (129)Xe NMR signal contrast and hyper-CEST (129)Xe MRI image contrast indicated its promise as highly sensitive hyperpolarized (129)Xe NMR nanoscale biosensor for future applications in cancer detection in vivo.


Asunto(s)
Técnicas Biosensibles/métodos , Imagen Molecular/métodos , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Cápside/química , Cápside/metabolismo , Línea Celular Tumoral , Humanos , Levivirus , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Compuestos Policíclicos/química , Conformación Proteica
15.
J Am Chem Soc ; 138(31): 9747-50, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27472048

RESUMEN

We report a (129)Xe NMR relaxation-based sensing approach that exploits changes in the bulk xenon relaxation rate induced by slowed tumbling of a cryptophane-based sensor upon target binding. The amplification afforded by detection of the bulk dissolved xenon allows sensitive detection of targets. The sensor comprises a xenon-binding cryptophane cage, a target interaction element, and a metal chelating agent. Xenon associated with the target-bound cryptophane cage is rapidly relaxed and then detected after exchange with the bulk. Here we show that large macromolecular targets increase the rotational correlation time of xenon, increasing its relaxation rate. Upon binding of a biotin-containing sensor to avidin at 1.5 µM concentration, the free xenon T2 is reduced by a factor of 4.


Asunto(s)
Técnicas Biosensibles , Sustancias Macromoleculares/química , Isótopos de Xenón/química , Biotina/química , Quelantes/química , Espectroscopía de Resonancia Magnética , Metales/química , Peso Molecular , Péptidos/química , Compuestos Policíclicos , Unión Proteica , Solubilidad , Agua/química
16.
Chem Commun (Camb) ; 52(15): 3119-22, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26795714

RESUMEN

We report a method for blocking interactions between (129)Xe and cucurbit[6]uril (CB6) until activation by a specific chemical event. We synthesized a CB6-rotaxane that allowed no (129)Xe interaction with the CB6 macrocycle component until a cleavage event released the CB6, which then produced a (129)Xe@CB6 NMR signal. This contrast-upon-activation (129)Xe NMR platform allows for modular synthesis and can be expanded to applications in detection and disease imaging.

17.
J Am Chem Soc ; 136(42): 14746-52, 2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25310840

RESUMEN

Supramolecular self-assembly offers promising new ways to control nanostructure morphology and respond to external stimuli. A pH-sensitive self-assembled system was developed to both control nanostructure shape and respond to the acidic microenvironment of tumors using self-assembling peptide amphiphiles (PAs). By incorporating an oligo-histidine H6 sequence, we developed two PAs that self-assembled into distinct morphologies on the nanoscale, either as nanofibers or spherical micelles, based on the incorporation of the aliphatic tail on the N-terminus or near the C-terminus, respectively. Both cylinder and sphere-forming PAs demonstrated reversible disassembly between pH 6.0 and 6.5 upon protonation of the histidine residues in acidic solutions. These PAs were then characterized and assessed for their potential to encapsulate hydrophobic chemotherapies. The H6-based nanofiber assemblies encapsulated camptothecin (CPT) with up to 60% efficiency, a 7-fold increase in CPT encapsulation relative to spherical micelles. Additionally, pH-sensitive nanofibers showed improved tumor accumulation over both spherical micelles and nanofibers that did not change morphologies in acidic environments. We have demonstrated that the morphological transitions upon changes in pH of supramolecular nanostructures affect drug encapsulation and tumor accumulation. Our findings also suggest that these supramolecular events can be tuned by molecular design to improve the pharmacologic properties of nanomedicines.


Asunto(s)
Antineoplásicos/química , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos/química , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Línea Celular Tumoral , Femenino , Histidina , Humanos , Concentración de Iones de Hidrógeno , Ratones , Nanofibras/química , Péptidos/farmacocinética , Péptidos/farmacología , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA