Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Graph Model ; 74: 54-60, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28351017

RESUMEN

A virtual screening protocol involving docking and molecular dynamics has been tested against the results of fluorescence polarization assays testing the potency of a series of compounds of the nutlin class for inhibition of the interaction between p53 and Mdmx, an interaction identified as a driver of certain cancers. The protocol uses a standard docking method (AutoDock) with a cutoff based on the AutoDock score (ADscore), followed by molecular dynamics simulation with a cutoff based on root-mean-square-deviation (RMSD) from the docked pose. An analysis of the experimental and computational results shows modest performance of ADscore alone, but dramatically improved performance when RMSD is also used.


Asunto(s)
Antineoplásicos/química , Imidazoles/química , Proteínas Nucleares/antagonistas & inhibidores , Piperazinas/química , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Sitios de Unión , Proteínas de Ciclo Celular , Ensayos de Selección de Medicamentos Antitumorales/métodos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas Nucleares/química , Unión Proteica , Proteínas Proto-Oncogénicas/química
2.
J Mol Biol ; 428(6): 1290-1303, 2016 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-26812210

RESUMEN

While the gene for p53 is mutated in many human cancers causing loss of function, many others maintain a wild-type gene but exhibit reduced p53 tumor suppressor activity through overexpression of the negative regulators, Mdm2 and/or MdmX. For the latter mechanism of loss of function, the activity of endogenous p53 can be restored through inhibition of Mdm2 or MdmX with small molecules. We previously reported a series of compounds based upon the Nutlin-3 chemical scaffold that bind to both MdmX and Mdm2 [Vara, B. A. et al. (2014) Organocatalytic, diastereo- and enantioselective synthesis of nonsymmetric cis-stilbene diamines: A platform for the preparation of single-enantiomer cis-imidazolines for protein-protein inhibition. J. Org. Chem. 79, 6913-6938]. Here we present the first solution structures based on data from NMR spectroscopy for MdmX in complex with four of these compounds and compare them with the MdmX:p53 complex. A p53-derived peptide binds with high affinity (Kd value of 150nM) and causes the formation of an extensive network of hydrogen bonds within MdmX; this constitutes the induction of order within MdmX through ligand binding. In contrast, the compounds bind more weakly (Kd values from 600nM to 12µM) and induce an incomplete hydrogen bond network within MdmX. Despite relatively weak binding, the four compounds activated p53 and induced p21(Cip1) expression in retinoblastoma cell lines that overexpress MdmX, suggesting that they specifically target MdmX and/or Mdm2. Our results document structure-activity relationships for lead-like small molecules targeting MdmX and suggest a strategy for their further optimization in the future by using NMR spectroscopy to monitor small-molecule-induced protein order as manifested through hydrogen bond formation.


Asunto(s)
Descubrimiento de Drogas/métodos , Imidazoles/química , Imidazoles/metabolismo , Piperazinas/química , Piperazinas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/química , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Relación Estructura-Actividad
3.
J Org Chem ; 79(15): 6913-38, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25017623

RESUMEN

The finding by scientists at Hoffmann-La Roche that cis-imidazolines could disrupt the protein-protein interaction between p53 and MDM2, thereby inducing apoptosis in cancer cells, raised considerable interest in this scaffold over the past decade. Initial routes to these small molecules (i.e., Nutlin-3) provided only the racemic form, with enantiomers being enriched by chromatographic separation using high-pressure liquid chromatography (HPLC) and a chiral stationary phase. Reported here is the first application of an enantioselective aza-Henry approach to nonsymmetric cis-stilbene diamines and cis-imidazolines. Two novel mono(amidine) organocatalysts (MAM) were discovered to provide high levels of enantioselection (>95% ee) across a broad range of substrate combinations. Furthermore, the versatility of the aza-Henry strategy for preparing nonsymmetric cis-imidazolines is illustrated by a comparison of the roles of aryl nitromethane and aryl aldimine in the key step, which revealed unique substrate electronic effects providing direction for aza-Henry substrate-catalyst matching. This method was used to prepare highly substituted cis-4,5-diaryl imidazolines that project unique aromatic rings, and these were evaluated for MDM2-p53 inhibition in a fluorescence polarization assay. The diversification of access to cis-stilbene diamine-derived imidazolines provided by this platform should streamline their further development as chemical tools for disrupting protein-protein interactions.


Asunto(s)
Amidinas/química , Diaminas/química , Imidazolinas/química , Estilbenos/química , Apoptosis , Catálisis , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Polarización de Fluorescencia , Humanos , Estructura Molecular , Fenómenos Químicos Orgánicos , Dominios y Motivos de Interacción de Proteínas , Estereoisomerismo
4.
PLoS One ; 7(6): e37518, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22675482

RESUMEN

SJ-172550 (1) was previously discovered in a biochemical high throughput screen for inhibitors of the interaction of MDMX and p53 and characterized as a reversible inhibitor (J. Biol. Chem. 2010; 285:10786). Further study of the biochemical mode of action of 1 has shown that it acts through a complicated mechanism in which the compound forms a covalent but reversible complex with MDMX and locks MDMX into a conformation that is unable to bind p53. The relative stability of this complex is influenced by many factors including the reducing potential of the media, the presence of aggregates, and other factors that influence the conformational stability of the protein. This complex mechanism of action hinders the further development of compound 1 as a selective MDMX inhibitor.


Asunto(s)
Acetatos/farmacología , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Pirazoles/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Acetatos/química , Secuencia de Aminoácidos , Tampones (Química) , Proteínas de Ciclo Celular , Humanos , Concentración 50 Inhibidora , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas Nucleares/química , Péptidos/metabolismo , Docilidad/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Conformación Proteica , Estabilidad Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas/química , Pirazoles/química , Temperatura , Proteína p53 Supresora de Tumor/química
5.
ACS Chem Biol ; 7(3): 563-70, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22220926

RESUMEN

The poly(ADP-ribose) (PAR) post-translational modification is essential for diverse cellular functions, including regulation of transcription, response to DNA damage, and mitosis. Cellular PAR is predominantly synthesized by the enzyme poly(ADP-ribose) polymerase-1 (PARP-1). PARP-1 is a critical node in the DNA damage response pathway, and multiple potent PARP-1 inhibitors have been described, some of which show considerable promise in the clinic for the treatment of certain cancers. Cellular PAR is efficiently degraded by poly(ADP-ribose) glycohydrolase (PARG), an enzyme for which no potent, readily accessible, and specific inhibitors exist. Herein we report the discovery of small molecules that effectively inhibit PARG in vitro and in cellular lysates. These potent PARG inhibitors can be produced in two chemical steps from commercial starting materials and have complete specificity for PARG over the other known PAR glycohydrolase (ADP-ribosylhydrolase 3, ARH3) and over PARP-1 and thus will be useful tools for studying the biochemistry of PAR signaling.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Glicósido Hidrolasas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Glicósido Hidrolasas/metabolismo , Ratones , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
6.
Artículo en Inglés | MEDLINE | ID: mdl-19964243

RESUMEN

Small molecules identified through high-throughput screens are an essential element in pharmaceutical discovery programs. It is now recognized that a substantial fraction of small molecules exhibit aggregating behavior leading to false positive results in many screening assays, typically due to nonspecific attachment to target proteins. Therefore, the ability to efficiently identify compounds within a screening library that aggregate can streamline the screening process by eliminating unsuitable molecules from further consideration. In this work we show that photonic crystal (PC) optical biosensor microplate technology can be utilized to identify and quantify small molecule aggregation. A group of aggregators and nonaggregators were tested using the PC technology, and measurements were compared with those gathered by three alternative methods: dynamic light scattering (DLS), an alpha-chymotrypsin colorimetric assay, and scanning electron microscopy (SEM). The PC biosensor measurements of aggregation were confirmed by visual observation using SEM, and were in general agreement with the alpha-chymotrypsin assay. As a label-free detection method, the PC biosensor aggregation assay is simple to implement and provides a quantitative direct measurement of the mass density of material adsorbed to the transducer surface, while the microplate-based sensor format enables compatibility with high-throughput automated liquid handling methods used in pharmaceutical screening.


Asunto(s)
Técnicas Biosensibles/instrumentación , Sistemas Microelectromecánicos/instrumentación , Preparaciones Farmacéuticas/análisis , Refractometría/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Peso Molecular , Fotones
7.
JALA Charlottesv Va ; 14(6): 348-359, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20930952

RESUMEN

Small molecules identified through high-throughput screens are an essential element in pharmaceutical discovery programs. It is now recognized that a substantial fraction of small molecules exhibit aggregating behavior leading to false positive results in many screening assays, typically due to nonspecific attachment to target proteins. Therefore, the ability to efficiently identify compounds within a screening library that aggregate can streamline the screening process by eliminating unsuitable molecules from further consideration. In this work, we show that photonic crystal (PC) optical biosensor microplate technology can be used to identify and quantify small-molecule aggregation. A group of aggregators and nonaggregators were tested using the PC technology, and measurements were compared with those gathered by three alternative methods: dynamic light scattering (DLS), an α-chymotrypsin colorimetric assay, and scanning electron microscopy (SEM). The PC biosensor measurements of aggregation were confirmed by visual observation using SEM, and were in general agreement with the α-chymotrypsin assay. DLS measurements, in contrast, demonstrated inconsistent readings for many compounds that are found to form aggregates in shapes, very different from the classical spherical particles assumed in DLS modeling. As a label-free detection method, the PC biosensor aggregation assay is simple to implement and provides a quantitative direct measurement of the mass density of material adsorbed to the transducer surface, whereas the microplate-based sensor format enables compatibility with high-throughput automated liquid-handling methods used in pharmaceutical screening.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA