Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
MAbs ; 15(1): 2253788, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37675979

RESUMEN

The clinical successes of immune checkpoint blockade have invigorated efforts to activate T cell-mediated responses against cancer. Targeting members of the PVR family, consisting of inhibitory receptors TIGIT, CD96, and CD112R, has been an active area of clinical investigation. In this study, the binding interactions and molecular assemblies of the PVR family receptors and ligands have been assessed in vitro. Furthermore, the anti-TIGIT monoclonal antibody BMS-986207 crystal structure in complex with TIGIT was determined and shows that the antibody binds an epitope that is commonly targeted by the CD155 ligand as well as other clinical anti-TIGIT antibodies. In contrast to previously proposed models, where TIGIT outcompetes costimulatory receptor CD226 for binding to CD155 due to much higher affinity (nanomolar range), our data rather suggest that PVR family members all engage in interactions with relatively weak affinity (micromolar range), including TIGIT and CD155 interactions. Thus, TIGIT and other PVR inhibitory receptors likely elicit immune suppression via increased surface expression rather than inherent differences in affinity. This work provides an improved foundational understanding of the PVR family network and mechanistic insight into therapeutic antibody intervention.


Asunto(s)
Neoplasias , Receptores Inmunológicos , Humanos , Linfocitos T/metabolismo , Anticuerpos Monoclonales/uso terapéutico , Ligandos
2.
Nat Struct Mol Biol ; 29(6): 537-548, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35655098

RESUMEN

Every voltage-gated ion channel (VGIC) has a pore domain (PD) made from four subunits, each comprising an antiparallel transmembrane helix pair bridged by a loop. The extent to which PD subunit structure requires quaternary interactions is unclear. Here, we present crystal structures of a set of bacterial voltage-gated sodium channel (BacNaV) 'pore only' proteins that reveal a surprising collection of non-canonical quaternary arrangements in which the PD tertiary structure is maintained. This context-independent structural robustness, supported by molecular dynamics simulations, indicates that VGIC-PD tertiary structure is independent of quaternary interactions. This fold occurs throughout the VGIC superfamily and in diverse transmembrane and soluble proteins. Strikingly, characterization of PD subunit-binding Fabs indicates that non-canonical quaternary PD conformations can occur in full-length VGICs. Together, our data demonstrate that the VGIC-PD is an autonomously folded unit. This property has implications for VGIC biogenesis, understanding functional states, de novo channel design, and VGIC structural origins.


Asunto(s)
Canales de Sodio Activados por Voltaje , Conformación Molecular , Simulación de Dinámica Molecular , Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/metabolismo
3.
Neuron ; 101(6): 1134-1149.e3, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30733149

RESUMEN

Calcium-dependent inactivation (CDI) is a fundamental autoregulatory mechanism in CaV1 and CaV2 voltage-gated calcium channels. Although CDI initiates with the cytoplasmic calcium sensor, how this event causes CDI has been elusive. Here, we show that a conserved selectivity filter (SF) domain II (DII) aspartate is essential for CDI. Mutation of this residue essentially eliminates CDI and leaves key channel biophysical characteristics untouched. DII mutants regain CDI by placing an aspartate at the analogous SF site in DIII or DIV, but not DI, indicating that CaV SF asymmetry is key to CDI. Together, our data establish that the CaV SF is the CDI endpoint. Discovery of this SF CDI gate recasts the CaV inactivation paradigm, placing it squarely in the framework of voltage-gated ion channel (VGIC) superfamily members in which SF-based gating is important. This commonality suggests that SF inactivation is an ancient process arising from the shared VGIC pore architecture.


Asunto(s)
Canales de Calcio Tipo L/genética , Canales de Calcio Tipo N/genética , Calcio/metabolismo , Activación del Canal Iónico/genética , Animales , Ácido Aspártico , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo N/metabolismo , Células HEK293 , Humanos , Mutación , Oocitos/metabolismo , Técnicas de Placa-Clamp , Xenopus laevis
4.
ACS Chem Neurosci ; 8(6): 1313-1326, 2017 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-28278376

RESUMEN

For many voltage-gated ion channels (VGICs), creation of a properly functioning ion channel requires the formation of specific protein-protein interactions between the transmembrane pore-forming subunits and cystoplasmic accessory subunits. Despite the importance of such protein-protein interactions in VGIC function and assembly, their potential as sites for VGIC modulator development has been largely overlooked. Here, we develop meta-xylyl (m-xylyl) stapled peptides that target a prototypic VGIC high affinity protein-protein interaction, the interaction between the voltage-gated calcium channel (CaV) pore-forming subunit α-interaction domain (AID) and cytoplasmic ß-subunit (CaVß). We show using circular dichroism spectroscopy, X-ray crystallography, and isothermal titration calorimetry that the m-xylyl staples enhance AID helix formation are structurally compatible with native-like AID:CaVß interactions and reduce the entropic penalty associated with AID binding to CaVß. Importantly, electrophysiological studies reveal that stapled AID peptides act as effective inhibitors of the CaVα1:CaVß interaction that modulate CaV function in an CaVß isoform-selective manner. Together, our studies provide a proof-of-concept demonstration of the use of protein-protein interaction inhibitors to control VGIC function and point to strategies for improved AID-based CaV modulator design.


Asunto(s)
Canales de Calcio/efectos de los fármacos , Canales de Calcio/metabolismo , Péptidos/farmacología , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Subunidades de Proteína/metabolismo , Humanos , Péptidos/metabolismo
5.
Cell ; 164(5): 922-36, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26919429

RESUMEN

Voltage-gated ion channels (VGICs) are outfitted with diverse cytoplasmic domains that impact function. To examine how such elements may affect VGIC behavior, we addressed how the bacterial voltage-gated sodium channel (BacNa(V)) C-terminal cytoplasmic domain (CTD) affects function. Our studies show that the BacNa(V) CTD exerts a profound influence on gating through a temperature-dependent unfolding transition in a discrete cytoplasmic domain, the neck domain, proximal to the pore. Structural and functional studies establish that the BacNa(V) CTD comprises a bi-partite four-helix bundle that bears an unusual hydrophilic core whose integrity is central to the unfolding mechanism and that couples directly to the channel activation gate. Together, our findings define a general principle for how the widespread four-helix bundle cytoplasmic domain architecture can control VGIC responses, uncover a mechanism underlying the diverse BacNa(V) voltage dependencies, and demonstrate that a discrete domain can encode the temperature-dependent response of a channel.


Asunto(s)
Proteínas Bacterianas/química , Gammaproteobacteria/metabolismo , Canales de Sodio Activados por Voltaje/química , Secuencia de Aminoácidos , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Desplegamiento Proteico , Alineación de Secuencia
6.
J Mol Biol ; 426(2): 467-83, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24120938

RESUMEN

Voltage-gated sodium channels (NaVs) are central elements of cellular excitation. Notwithstanding advances from recent bacterial NaV (BacNaV) structures, key questions about gating and ion selectivity remain. Here, we present a closed conformation of NaVAe1p, a pore-only BacNaV derived from NaVAe1, a BacNaV from the arsenite oxidizer Alkalilimnicola ehrlichei found in Mono Lake, California, that provides insight into both fundamental properties. The structure reveals a pore domain in which the pore-lining S6 helix connects to a helical cytoplasmic tail. Electrophysiological studies of full-length BacNaVs show that two elements defined by the NaVAe1p structure, an S6 activation gate position and the cytoplasmic tail "neck", are central to BacNaV gating. The structure also reveals the selectivity filter ion entry site, termed the "outer ion" site. Comparison with mammalian voltage-gated calcium channel (CaV) selectivity filters, together with functional studies, shows that this site forms a previously unknown determinant of CaV high-affinity calcium binding. Our findings underscore commonalities between BacNaVs and eukaryotic voltage-gated channels and provide a framework for understanding gating and ion permeation in this superfamily.


Asunto(s)
Ectothiorhodospiraceae/enzimología , Iones/metabolismo , Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , California , Cristalografía por Rayos X , Ectothiorhodospiraceae/aislamiento & purificación , Lagos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Microbiología del Agua
7.
J Mol Biol ; 425(17): 3217-34, 2013 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-23811053

RESUMEN

In neurons, binding of calmodulin (CaM) or calcium-binding protein 1 (CaBP1) to the CaV1 (L-type) voltage-gated calcium channel IQ domain endows the channel with diametrically opposed properties. CaM causes calcium-dependent inactivation and limits calcium entry, whereas CaBP1 blocks calcium-dependent inactivation (CDI) and allows sustained calcium influx. Here, we combine isothermal titration calorimetry with cell-based functional measurements and mathematical modeling to show that these calcium sensors behave in a competitive manner that is explained quantitatively by their apo-state binding affinities for the IQ domain. This competition can be completely blocked by covalent tethering of CaM to the channel. Further, we show that Ca(2+)/CaM has a sub-picomolar affinity for the IQ domain that is achieved without drastic alteration of calcium-binding properties. The observation that the apo forms of CaM and CaBP1 compete with each other demonstrates a simple mechanism for direct modulation of CaV1 function and suggests a means by which excitable cells may dynamically tune CaV activity.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calmodulina/metabolismo , Animales , Calcio/metabolismo , Humanos , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Xenopus
8.
Channels (Austin) ; 5(4): 320-4, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21712653

RESUMEN

Interactions between calmodulin (CaM) and voltage-gated calcium channels (Ca(v)s) are crucial for Ca(v) activity-dependent feedback modulation. We recently reported an X-ray structure that shows two Ca(2+)/CaM molecules bound to the Ca(v)1.2 C terminal tail, one at the PreIQ region and one at the IQ domain. Surprisingly, the asymmetric unit of the crystal showed a dimer in which Ca(2+)/CaM bridged two PreIQ helixes to form a 4:2 Ca(2+)/CaM:Ca(v) C-terminal tail assembly. Contrary to previous proposals based on a similar crystallographic dimer, extensive biochemical analysis together with subunit counting experiments of full-length channels in live cell membranes failed to find evidence for multimers that would be compatible with the 4:2 crossbridged complex. Here, we examine this possibility further. We find that CaM over-expression has no functional effect on Ca(v)1.2 inactivation or on the stoichiometry of full-length Ca(v)1.2. These data provide further support for the monomeric Ca(v)1.2 stoichiometry. Analysis of the electrostatic surfaces of the 2:1 Ca(2+)/CaM:Ca(V) C-terminal tail assembly reveals notable patches of electronegativity. These could influence various forms of channel modulation by interacting with positively charged elements from other intracellular channel domains.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Calmodulina/biosíntesis , Membrana Celular/metabolismo , Expresión Génica , Multimerización de Proteína , Animales , Canales de Calcio Tipo L/genética , Calmodulina/genética , Membrana Celular/genética , Humanos , Estructura Terciaria de Proteína , Xenopus laevis
9.
Channels (Austin) ; 4(6): 459-74, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21139419

RESUMEN

Voltage-gated calcium channels (CaVs) are large, transmembrane multiprotein complexes that couple membrane depolarization to cellular calcium entry. These channels are central to cardiac action potential propagation, neurotransmitter and hormone release, muscle contraction, and calcium-dependent gene transcription. Over the past six years, the advent of high-resolution structural studies of CaV components from different isoforms and CaV modulators has begun to reveal the architecture that underlies the exceptionally rich feedback modulation that controls CaV action. These descriptions of CaV molecular anatomy have provided new, structure-based insights into the mechanisms by which particular channel elements affect voltage-dependent inactivation (VDI), calcium­dependent inactivation (CDI), and calcium­dependent facilitation (CDF). The initial successes have been achieved through structural studies of soluble channel domains and modulator proteins and have proven most powerful when paired with biochemical and functional studies that validate ideas inspired by the structures. Here, we review the progress in this growing area and highlight some key open challenges for future efforts.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Activación del Canal Iónico , Secuencia de Aminoácidos , Animales , Canales de Calcio/química , Proteínas de Unión al Calcio/metabolismo , Calmodulina/metabolismo , Humanos , Potenciales de la Membrana , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Multimerización de Proteína , Relación Estructura-Actividad
10.
Structure ; 18(12): 1617-31, 2010 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-21134641

RESUMEN

Calcium-binding protein 1 (CaBP1), a calmodulin (CaM) homolog, endows certain voltage-gated calcium channels (Ca(V)s) with unusual properties. CaBP1 inhibits Ca(V)1.2 calcium-dependent inactivation (CDI) and introduces calcium-dependent facilitation (CDF). Here, we show that the ability of CaBP1 to inhibit Ca(V)1.2 CDI and induce CDF arises from interaction between the CaBP1 N-lobe and interlobe linker residue Glu94. Unlike CaM, where functional EF hands are essential for channel modulation, CDI inhibition does not require functional CaBP1 EF hands. Furthermore, CaBP1-mediated CDF has different molecular requirements than CaM-mediated CDF. Overall, the data show that CaBP1 comprises two structural modules having separate functions: similar to CaM, the CaBP1 C-lobe serves as a high-affinity anchor that binds the Ca(V)1.2 IQ domain at a site that overlaps with the Ca²+/CaM C-lobe site, whereas the N-lobe/linker module houses the elements required for channel modulation. Discovery of this division provides the framework for understanding how CaBP1 regulates Ca(V)s.


Asunto(s)
Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/efectos de los fármacos , Proteínas de Unión al Calcio/farmacología , Calcio/farmacología , Calmodulina/farmacología , Activación del Canal Iónico/efectos de los fármacos , Secuencia de Aminoácidos , Sitios de Unión , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Cristalografía por Rayos X , Humanos , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
11.
EMBO J ; 29(23): 3924-38, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-20953164

RESUMEN

Interactions between voltage-gated calcium channels (Ca(V)s) and calmodulin (CaM) modulate Ca(V) function. In this study, we report the structure of a Ca(2+)/CaM Ca(V)1.2 C-terminal tail complex that contains two PreIQ helices bridged by two Ca(2+)/CaMs and two Ca(2+)/CaM-IQ domain complexes. Sedimentation equilibrium experiments establish that the complex has a 2:1 Ca(2+)/CaM:C-terminal tail stoichiometry and does not form higher order assemblies. Moreover, subunit-counting experiments demonstrate that in live cell membranes Ca(V)1.2s are monomers. Thus, contrary to previous proposals, the crystallographic dimer lacks physiological relevance. Isothermal titration calorimetry and biochemical experiments show that the two Ca(2+)/CaMs in the complex have different properties. Ca(2+)/CaM bound to the PreIQ C-region is labile, whereas Ca(2+)/CaM bound to the IQ domain is not. Furthermore, neither of lobes of apo-CaM interacts strongly with the PreIQ domain. Electrophysiological studies indicate that the PreIQ C-region has a role in calcium-dependent facilitation. Together, the data show that two Ca(2+)/CaMs can bind the Ca(V)1.2 tail simultaneously and indicate a functional role for Ca(2+)/CaM at the C-region site.


Asunto(s)
Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Calcio/química , Calmodulina/química , Membrana Celular/metabolismo , Cristalografía por Rayos X , Dimerización , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Xenopus
12.
J Gen Physiol ; 133(3): 327-43, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19237593

RESUMEN

Two processes dominate voltage-gated calcium channel (Ca(V)) inactivation: voltage-dependent inactivation (VDI) and calcium-dependent inactivation (CDI). The Ca(V)beta/Ca(V)alpha(1)-I-II loop and Ca(2+)/calmodulin (CaM)/Ca(V)alpha(1)-C-terminal tail complexes have been shown to modulate each, respectively. Nevertheless, how each complex couples to the pore and whether each affects inactivation independently have remained unresolved. Here, we demonstrate that the IS6-alpha-interaction domain (AID) linker provides a rigid connection between the pore and Ca(V)beta/I-II loop complex by showing that IS6-AID linker polyglycine mutations accelerate Ca(V)1.2 (L-type) and Ca(V)2.1 (P/Q-type) VDI. Remarkably, mutations that either break the rigid IS6-AID linker connection or disrupt Ca(V)beta/I-II association sharply decelerate CDI and reduce a second Ca(2+)/CaM/Ca(V)alpha(1)-C-terminal-mediated process known as calcium-dependent facilitation. Collectively, the data strongly suggest that components traditionally associated solely with VDI, Ca(V)beta and the IS6-AID linker, are essential for calcium-dependent modulation, and that both Ca(V)beta-dependent and CaM-dependent components couple to the pore by a common mechanism requiring Ca(V)beta and an intact IS6-AID linker.


Asunto(s)
Canales de Calcio Tipo L/fisiología , Calcio/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Dicroismo Circular , Humanos , Activación del Canal Iónico , Potenciales de la Membrana/fisiología , Datos de Secuencia Molecular , Mutación , Unión Proteica , Conformación Proteica , Isoformas de Proteínas , Conejos , Ratas , Proteínas Recombinantes , Xenopus
13.
J Mol Biol ; 369(5): 1282-95, 2007 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-17482646

RESUMEN

The universal secondary messenger cAMP is produced by adenylyl cyclases (ACs). Most bacterial and all eukaryotic ACs belong to class III of six divergent classes. A class III characteristic is formation of the catalytic pocket at a dimer interface and the presence of additional regulatory domains. Mycobacterium tuberculosis possesses 15 class III ACs, including Rv1264, which is activated at acidic pH due to pH-dependent structural transitions of the Rv1264 dimer. It has been shown by X-ray crystallography that the N-terminal regulatory and C-terminal catalytic domains of Rv1264 interact in completely different ways in the active and inhibited states. Here, we report an in-depth structural and functional analysis of the regulatory domain of Rv1264. The 1.6 A resolution crystal structure shows the protein in a tight, disk-shaped dimer, formed around a helical bundle, and involving a protein chain crossover. To understand pH regulation, we determined structures at acidic and basic pH values and employed structure-based mutagenesis in the holoenzyme to elucidate regulation using an AC activity assay. It has been shown that regulatory and catalytic domains must be linked in a single protein chain. The new studies demonstrate that the length of the linker segment is decisive for regulation. Several amino acids on the surface of the regulatory domain, when exchanged, altered the pH-dependence of AC activity. However, these residues are not conserved amongst a number of related ACs. The closely related mycobacterial Rv2212, but not Rv1264, is strongly activated by the addition of fatty acids. The structure resolved the presence of a deeply embedded fatty acid, characterised as oleic acid by mass spectrometry, which may serve as a hinge. From these data, we conclude that the regulatory domain is a structural scaffold used for distinct regulatory purposes.


Asunto(s)
Adenilil Ciclasas/química , Adenilil Ciclasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Ácido Oléico/metabolismo , Cristalografía por Rayos X , Ácidos Grasos/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Ácido Oléico/química , Conformación Proteica , Estructura Terciaria de Proteína , Homología Estructural de Proteína
14.
Nat Struct Mol Biol ; 13(11): 987-95, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17057713

RESUMEN

Brain I(A) and cardiac I(to) currents arise from complexes containing Kv4 voltage-gated potassium channels and cytoplasmic calcium-sensor proteins (KChIPs). Here, we present X-ray crystallographic and small-angle X-ray scattering data that show that the KChIP1-Kv4.3 N-terminal cytoplasmic domain complex is a cross-shaped octamer bearing two principal interaction sites. Site 1 comprises interactions between a unique Kv4 channel N-terminal hydrophobic segment and a hydrophobic pocket formed by displacement of the KChIP H10 helix. Site 2 comprises interactions between a T1 assembly domain loop and the KChIP H2 helix. Functional and biochemical studies indicate that site 1 influences channel trafficking, whereas site 2 affects channel gating, and that calcium binding is intimately linked to KChIP folding and complex formation. Together, the data resolve how Kv4 channels and KChIPs interact and provide a framework for understanding how KChIPs modulate Kv4 function.


Asunto(s)
Proteínas de Interacción con los Canales Kv/química , Proteínas de Interacción con los Canales Kv/metabolismo , Canales de Potasio Shal/química , Canales de Potasio Shal/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Calcio/metabolismo , Cristalografía por Rayos X , Humanos , Activación del Canal Iónico , Proteínas de Interacción con los Canales Kv/genética , Potenciales de la Membrana , Modelos Moleculares , Datos de Secuencia Molecular , Técnicas de Placa-Clamp , Unión Proteica , Conformación Proteica , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Dispersión de Radiación , Canales de Potasio Shal/genética , Rayos X , Xenopus
15.
Science ; 308(5724): 1020-3, 2005 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-15890882

RESUMEN

Class III adenylyl cyclases contain catalytic and regulatory domains, yet structural insight into their interactions is missing. We show that the mycobacterial adenylyl cyclase Rv1264 is rendered a pH sensor by its N-terminal domain. In the structure of the inhibited state, catalytic and regulatory domains share a large interface involving catalytic residues. In the structure of the active state, the two catalytic domains rotate by 55 degrees to form two catalytic sites at their interface. Two alpha helices serve as molecular switches. Mutagenesis is consistent with a regulatory role of the structural transition, and we suggest that the transition is regulated by pH.


Asunto(s)
Adenilil Ciclasas/química , Adenilil Ciclasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/enzimología , Adenosina Trifosfato/metabolismo , Inhibidores de Adenilato Ciclasa , Adenilil Ciclasas/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Dominio Catalítico , Fenómenos Químicos , Química Física , Cristalografía por Rayos X , Dimerización , Holoenzimas/química , Holoenzimas/metabolismo , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Conformación Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...