Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Enzyme Inhib Med Chem ; 38(1): 2205042, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37184042

RESUMEN

Twenty-five azole compounds (P1-P25) were synthesised using regioselective base-metal catalysed and microwave-assisted approaches, fully characterised by high-resolution mass spectrometry (HRMS), nuclear magnetic resonance (NMR), and infrared spectra (IR) analyses, and evaluated for anticancer, anti-tyrosinase, and anti-oxidant activities in silico and in vitro. P25 exhibited potent anticancer activity against cells of four skin cancer (SC) lines, with selectivity for melanoma (A375, SK-Mel-28) or non-melanoma (A431, SCC-12) SC cells over non-cancerous HaCaT-keratinocytes. Clonogenic, scratch-wound, and immunoblotting assay data were consistent with anti-proliferative results, expression profiling therewith implicating intrinsic and extrinsic apoptosis activation. In a mushroom tyrosinase inhibition assay, P14 was most potent among the compounds (half-maximal inhibitory concentration where 50% of cells are dead, IC50 15.9 µM), with activity greater than arbutin and kojic acid. Also, P6 exhibited noteworthy free radical-scavenging activity. Furthermore, in silico docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) simulations predicted prominent-phenotypic actives to engage diverse cancer/hyperpigmentation-related targets with relatively high affinities. Altogether, promising early-stage hits were identified - some with multiple activities - warranting further hit-to-lead optimisation chemistry with further biological evaluations, towards identifying new skin-cancer and skin-pigmentation renormalising agents.


Asunto(s)
Monofenol Monooxigenasa , Neoplasias Cutáneas , Humanos , Antioxidantes/farmacología , Estructura Molecular , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Simulación por Computador , Neoplasias Cutáneas/tratamiento farmacológico , Azoles , Pirazoles
2.
Genome Announc ; 5(49)2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29217789

RESUMEN

We report the complete genome sequences of 19 cluster CA bacteriophages isolated from environmental samples using Rhodococcus erythropolis as a host. All of the phages are Siphoviridae, have similar genome lengths (46,314 to 46,985 bp) and G+C contents (58.5 to 58.8%), and share nucleotide sequence similarity.

3.
Nat Microbiol ; 2: 16251, 2017 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-28067906

RESUMEN

Temperate phages are common, and prophages are abundant residents of sequenced bacterial genomes. Mycobacteriophages are viruses that infect mycobacterial hosts including Mycobacterium tuberculosis and Mycobacterium smegmatis, encompass substantial genetic diversity and are commonly temperate. Characterization of ten Cluster N temperate mycobacteriophages revealed at least five distinct prophage-expressed viral defence systems that interfere with the infection of lytic and temperate phages that are either closely related (homotypic defence) or unrelated (heterotypic defence) to the prophage. Target specificity is unpredictable, ranging from a single target phage to one-third of those tested. The defence systems include a single-subunit restriction system, a heterotypic exclusion system and a predicted (p)ppGpp synthetase, which blocks lytic phage growth, promotes bacterial survival and enables efficient lysogeny. The predicted (p)ppGpp synthetase coded by the Phrann prophage defends against phage Tweety infection, but Tweety codes for a tetrapeptide repeat protein, gp54, which acts as a highly effective counter-defence system. Prophage-mediated viral defence offers an efficient mechanism for bacterial success in host-virus dynamics, and counter-defence promotes phage co-evolution.


Asunto(s)
Micobacteriófagos/fisiología , Mycobacterium smegmatis/virología , Mycobacterium tuberculosis/virología , Profagos/fisiología , ADN Viral/genética , Variación Genética , Genoma Bacteriano , Genoma Viral , Ligasas/genética , Lisogenia , Micobacteriófagos/genética , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Filogenia , Profagos/enzimología , Profagos/genética , Proteínas Virales/genética
4.
PLoS One ; 10(3): e0118725, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25742016

RESUMEN

Mycobacteriophages--viruses of mycobacterial hosts--are genetically diverse but morphologically are all classified in the Caudovirales with double-stranded DNA and tails. We describe here a group of five closely related mycobacteriophages--Corndog, Catdawg, Dylan, Firecracker, and YungJamal--designated as Cluster O with long flexible tails but with unusual prolate capsids. Proteomic analysis of phage Corndog particles, Catdawg particles, and Corndog-infected cells confirms expression of half of the predicted gene products and indicates a non-canonical mechanism for translation of the Corndog tape measure protein. Bioinformatic analysis identifies 8-9 strongly predicted SigA promoters and all five Cluster O genomes contain more than 30 copies of a 17 bp repeat sequence with dyad symmetry located throughout the genomes. Comparison of the Cluster O phages provides insights into phage genome evolution including the processes of gene flux by horizontal genetic exchange.


Asunto(s)
ADN Viral , Genoma Viral , Micobacteriófagos/genética , Variación Genética , Genómica , Filogenia
5.
J Basic Microbiol ; 54(10): 1140-5, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24740689

RESUMEN

A recent explosion in the amount of genomic data has revealed a large genetic diversity in the bacteriophages that infect Mycobacterium smegmatis. In an effort to assess the novelty of newly described mycobacteriophage isolates and provide a preliminary determination of their probable cluster assignment prior to full genome sequencing, we have developed a systematic approach that relies on restriction endonuclease analysis. We demonstrate that a web-based tool, the Phage Enzyme Tool (or PET), is capable of rapidly facilitating this analysis and exhibits reliability in the putative placement of mycobacteriophages into specific clusters of previously sequenced phages. We propose that this tool represents a useful analytical step in the initial study of phage genomes and that this tool will increase the efficiency of phage genome characterization and enhance the educational activities involving mycobacteriophage discovery.


Asunto(s)
Enzimas de Restricción del ADN/metabolismo , Internet , Micobacteriófagos , Programas Informáticos , Análisis por Conglomerados , ADN Viral/análisis , Marcadores Genéticos , Micobacteriófagos/clasificación , Micobacteriófagos/genética , Mycobacterium smegmatis/virología
6.
mBio ; 5(1): e01051-13, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24496795

RESUMEN

UNLABELLED: Engaging large numbers of undergraduates in authentic scientific discovery is desirable but difficult to achieve. We have developed a general model in which faculty and teaching assistants from diverse academic institutions are trained to teach a research course for first-year undergraduate students focused on bacteriophage discovery and genomics. The course is situated within a broader scientific context aimed at understanding viral diversity, such that faculty and students are collaborators with established researchers in the field. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) course has been widely implemented and has been taken by over 4,800 students at 73 institutions. We show here that this alliance-sourced model not only substantially advances the field of phage genomics but also stimulates students' interest in science, positively influences academic achievement, and enhances persistence in science, technology, engineering, and mathematics (STEM) disciplines. Broad application of this model by integrating other research areas with large numbers of early-career undergraduate students has the potential to be transformative in science education and research training. IMPORTANCE: Engagement of undergraduate students in scientific research at early stages in their careers presents an opportunity to excite students about science, technology, engineering, and mathematics (STEM) disciplines and promote continued interests in these areas. Many excellent course-based undergraduate research experiences have been developed, but scaling these to a broader impact with larger numbers of students is challenging. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunting Advancing Genomics and Evolutionary Science (SEA-PHAGES) program takes advantage of the huge size and diversity of the bacteriophage population to engage students in discovery of new viruses, genome annotation, and comparative genomics, with strong impacts on bacteriophage research, increased persistence in STEM fields, and student self-identification with learning gains, motivation, attitude, and career aspirations.


Asunto(s)
Bacterias/virología , Bacteriófagos/genética , Genómica/educación , Microbiología/educación , Adulto , Femenino , Humanos , Masculino , Estudiantes , Adulto Joven
7.
CBE Life Sci Educ ; 9(3): 165-71, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20810946

RESUMEN

In response to the call of BIO2010 for integrating quantitative skills into undergraduate biology education, 30 Howard Hughes Medical Institute (HHMI) Program Directors at the 2006 HHMI Program Directors Meeting established a consortium to investigate, implement, develop, and disseminate best practices resulting from the integration of math and biology. With the assistance of an HHMI-funded mini-grant, led by Karl Joplin of East Tennessee State University, and support in institutional HHMI grants at Emory and University of Delaware, these institutions held a series of summer institutes and workshops to document progress toward and address the challenges of implementing a more quantitative approach to undergraduate biology education. This report summarizes the results of the four summer institutes (2007-2010). The group developed four draft white papers, a wiki site, and a listserv. One major outcome of these meetings is this issue of CBE-Life Sciences Education, which resulted from proposals at our 2008 meeting and a January 2009 planning session. Many of the papers in this issue emerged from or were influenced by these meetings.


Asunto(s)
Biología/educación , Matemática/educación , Congresos como Asunto , Publicaciones Periódicas como Asunto , Universidades
8.
Folia Parasitol (Praha) ; 52(1-2): 111-7, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-16004370

RESUMEN

Microsporidia constitute a large group of obligate intracellular protozoan parasites that inject themselves into host cells via the extrusion apparatus of the infective spore stage. Although the injection process is poorly understood, its energy source is thought to reside in the posterior vacuole that swells significantly during spore firing. Here we report the presence and localisation of the key peroxisomal enzymes catalase and acyl-CoA oxidase (ACOX) within the posterior vacuole of Spraguea lophii (Doflein, 1898) spores. Western blot analyses show that these enzymes discharge out of the spore and end up in the medium external to the extruded sporoplasms. The presence of a catalase enzyme system in the Microsporidia was first made evident by the detection of significant levels of molecular oxygen in the medium containing discharging spores in the presence of hydrogen peroxide. Catalase was visualised in inactive, activated, and discharged spores using alkaline diaminobenzidine (DAB) on glutaraldehyde-fixed cells. The position of these enzymes within the extrusion apparatus before and during spore discharge support the Lom and Vávra model that postulates discharge occurs by an eversion process. In addition to these enzymes, spores of S. lophii contain another characteristic peroxisomal component, the very long chain fatty acid (VLCFA) nervonic acid. A sizeable decrease in nervonic acid levels occurs during and after spore discharge. These data indicate that nervonic acid is discharged from the spore into the external medium during firing along with the catalase and ACOX enzymes.


Asunto(s)
Acil-CoA Oxidasa/metabolismo , Apansporoblastina/enzimología , Catalasa/metabolismo , Peces/microbiología , Esporas Fúngicas/enzimología , Vacuolas/enzimología , Animales , Western Blotting , Ácidos Grasos Monoinsaturados/metabolismo , Microscopía Electrónica , Modelos Biológicos , Oxígeno/metabolismo , Esporas Fúngicas/ultraestructura
10.
J Appl Genet ; 44(3): 369-73, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12923311

RESUMEN

Genetic selection for disease resistance may be facilitated by molecular markers of the major histocompatibility complex (MHC) of poultry. We describe the first sequence variation documented at the MHC Class II B region of turkeys, and provide specific probe optimization conditions for studying RFLP polymorphisms in this species.


Asunto(s)
Antígenos de Histocompatibilidad Clase II/genética , Sondas Moleculares , Pavos/genética , Animales , Southern Blotting , ADN/sangre , ADN/aislamiento & purificación , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...