Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Econ Entomol ; 117(2): 377-387, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38289584

RESUMEN

Division of labor within a honey bee colony creates a codependence between bees performing different tasks. The most obvious example of this is between the reproductive queen and worker bees. Queen bees lay 1,000 or more eggs a day, while young worker bees tend and feed queens. Young workers and queens can be exposed to pesticides when foragers return to the hive with contaminated resources. Previous research has found negative effects of larval exposure to insect-growth disruptors (IGD) methoxyfenozide and pyriproxyfen, on adult responsiveness to artificial queen pheromone. The present work investigates potential physiological and molecular mechanisms underpinning this behavioral change by examining the development of hypopharyngeal glands and ovaries as well as the expression of genes related to reproduction and worker endocrine signaling in the brain and hypopharyngeal gland tissues. Though hypopharyngeal gland and ovary development were not altered by developmental exposure to IGDs, gene expression differed. Specifically, in the brain tissue, ilp1 was downregulated in bees exposed to pyriproxyfen during development, and Kr-h1 was downregulated in both methoxyfenozide- and pyriproxyfen-exposed bees. In the hypopharyngeal glands, Kr-h1, EcR-A, EcR-B, and E75 were upregulated in honey bees exposed to methoxyfenozide compared to those in the pyriproxyfen or control treatments. Here we discuss these results and their potential implications for the health and performance of honey bee colonies.


Asunto(s)
Hidrazinas , Himenópteros , Femenino , Abejas/genética , Animales , Conducta Social , Hormonas Juveniles , Encéfalo/metabolismo
2.
Sci Total Environ ; 916: 170193, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38278225

RESUMEN

Honey bees are unintentionally exposed to a wide range of chemicals through various routes in their natural environment, yet research on the cumulative effects of multi-chemical and sublethal exposures on important caste members, including the queen bee and brood, is still in its infancy. The hive's social structure and food-sharing (trophallaxis) practices are important aspects to consider when identifying primary and secondary exposure pathways for residential hive members and possible chemical reservoirs within the colony. Secondary exposures may also occur through chemical transfer (maternal offloading) to the brood and by contact through possible chemical diffusion from wax cells to all hive members. The lack of research on peer-to-peer exposures to contaminants and their metabolites may be in part due to the limitations in sensitive analytical techniques for monitoring chemical fate and dispersion. Combined application of automated honey bee monitoring and modern chemical trace analysis techniques could offer rapid progress in quantifying chemical transfer and accumulation within the hive environment and developing effective mitigation strategies for toxic chemical co-exposures. To enhance the understanding of chemical fate and toxicity within the entire colony, it is crucial to consider both the intricate interactions among hive members and the potential synergistic effects arising from combinations of chemical and their metabolites.


Asunto(s)
Alimentos , Abejas , Animales
3.
Environ Toxicol Chem ; 43(1): 222-233, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37861380

RESUMEN

Trisiloxane surfactants are often applied in formulated adjuvant products to blooming crops, including almonds, exposing the managed honey bees (Apis mellifera) used for pollination of these crops and persisting in colony matrices, such as bee bread. Despite this, little is known regarding the effects of trisiloxane surfactants on important aspects of colony health, such as reproduction. In the present study, we use laboratory assays to examine how exposure to field-relevant concentrations of three trisiloxane surfactants found in commonly used adjuvant formulations affect queen oviposition rates, worker interactions with the queen, and worker susceptibility to endogenous viral pathogens. Trisiloxane surfactants were administered at 5 mg/kg in pollen supplement diet for 14 days. No effects on worker behavior or physiology could be detected, but our results demonstrate that hydroxy-capped trisiloxane surfactants can negatively affect queen oviposition and methyl-capped trisiloxane surfactants cause increased replication of Deformed Wing Virus in workers, suggesting that trisiloxane surfactant use while honey bees are foraging may negatively impact colony longevity and growth. Environ Toxicol Chem 2024;43:222-233. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Asunto(s)
Virus ARN , Tensoactivos , Humanos , Femenino , Abejas , Animales , Tensoactivos/toxicidad , Reproducción , Replicación Viral
4.
PLoS One ; 18(10): e0292176, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37782633

RESUMEN

Pesticide exposure and queen loss are considered to be major causes of honey bee colony mortality, yet little is known regarding the effects of regularly encountered agrochemicals on honey bee reproduction. Here, we present the results of a two-generational study using specialized cages to expose queens to commonly used insect growth disrupting pesticides (IGDs) via their retinue of worker bees. Under IGD exposure, we tracked queen performance and worker responses to queens, then the performance of the exposed queens' offspring was assessed to identify patterns that may contribute to the long-term health and stability of a social insect colony. The positive control, novaluron, resulted in deformed larvae hatching from eggs laid by exposed queens, and methoxyfenozide, diflubenzuron, and novaluron caused a slight decrease in daily egg laying rates, but this was not reflected in the total egg production over the course of the experiment. Curiously, eggs laid by queens exposed to pyriproxyfen exhibited increased hatching rates, and those larvae developed into worker progeny with increased responsiveness to their queens. Additionally, pyriproxyfen and novaluron exposure affected the queen ovarian protein expression, with the overwhelming majority of differentially expressed proteins coming from the pyriproxyfen exposure. We discuss these results and the potential implications for honey bee reproduction and colony health.


Asunto(s)
Plaguicidas , Compuestos de Fenilurea , Abejas , Animales , Larva , Reproducción , Plaguicidas/toxicidad , Insectos
5.
J Insect Sci ; 22(3)2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35703425

RESUMEN

Techniques to monitor honey bee (Apis mellifera) egg production in cages allow researchers to study how different environmental factors contribute to reproduction. However, although the conditions required to facilitate queen egg production in a laboratory setting have been established, limited work has addressed the requirements for stimulating and monitoring worker egg laying. Here, we documented that drone laying workers will lay eggs in Queen Monitoring Cages (QMC), specialized cages designed to facilitate queen egg laying under controlled conditions. Egg production and worker mortality were compared between QMCs containing queens and those containing drone laying workers. High-definition images of the last abdominal segments of living first-instar larvae hatched from worker laid eggs and those putatively laid by queens were qualitatively compared to identify candidate characteristics to determine their sex.


Asunto(s)
Conducta Social , Dispositivos Aéreos No Tripulados , Animales , Abejas , Oviposición , Óvulo , Reproducción
6.
J Vis Exp ; (169)2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33749672

RESUMEN

Current risk assessment strategies for honey bees rely heavily upon laboratory tests performed on adult or immature worker bees, but these methods may not accurately capture the effects of agrochemical exposure on honey bee queens. As the sole producer of fertilized eggs inside a honeybee colony, the queen is arguably the most important single member of a functioning colony unit. Therefore, understanding how agrochemicals affect queen health and productivity should be considered a critical aspect of pesticide risk assessment. Here, an adapted method is presented to expose honey bee queens and worker queen attendants to agrochemical stressors administered through a worker diet, followed by tracking egg production in the laboratory and assessing first instar eclosion using a specialized cage, referred to as a Queen Monitoring Cage. To illustrate the method's intended use, results of an experiment in which worker queen attendants were fed diet containing sublethal doses of imidacloprid and effects on queens were monitored are described.


Asunto(s)
Agroquímicos/toxicidad , Abejas/efectos de los fármacos , Abejas/fisiología , Jerarquia Social , Medición de Riesgo , Conducta Sexual Animal/efectos de los fármacos , Animales , Abejas/embriología , Conducta Alimentaria/efectos de los fármacos , Femenino , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Óvulo/efectos de los fármacos , Reproducción/efectos de los fármacos
7.
Ecotoxicol Environ Saf ; 205: 111142, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32829209

RESUMEN

Honey bees (Apis mellifera) are highly valued pollinators that help to ensure national food security in the United States, but reports of heavy annual losses to managed colonies have caused concerns and prompted investigations into the causes of colony losses. One factor that can negatively affect honey bee health and survival is agrochemical exposure. Investigations into the sublethal effects of agrochemicals on important metrics of colony health such as reproduction and queen fecundity has been limited by the availability of targeted methods to study honey bee queens. This work investigates the effects of three insect growth regulators (IGR), a class of agrochemicals known to target pathways involved in insect reproduction, on honey bee queen oviposition, egg hatching, and worker hypopharyngeal development in order to quantify their effects on the fecundity of mated queens. The reported results demonstrate that none of the IGRs affected oviposition, but all three affected egg eclosion. Worker bees consuming methoxyfenozide had significantly larger hypopharyngeal glands at two weeks of age than bees not fed this compound. The results suggest that although IGRs may not exhibit direct toxic effects on adult honey bees, they can affect larval eclosion from eggs and the physiology of workers, which may contribute to colony population declines over time.


Asunto(s)
Abejas/fisiología , Hormonas Juveniles/toxicidad , Óvulo , Animales , Femenino , Hidrazinas , Larva , Oviposición/efectos de los fármacos , Oviposición/fisiología , Reproducción
8.
PLoS One ; 13(9): e0203444, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30183759

RESUMEN

Honey bee populations have been declining precipitously over the past decade, and multiple causative factors have been identified. Recent research indicates that these frequently co-occurring stressors interact, often in unpredictable ways, therefore it has become important to develop robust methods to assess their effects both in isolation and in combination. Most such efforts focus on honey bee workers, but the state of a colony also depends on the health and productivity of its queen. However, it is much more difficult to quantify the performance of queens relative to workers in the field, and there are no laboratory assays for queen performance. Here, we present a new system to monitor honey bee queen egg laying under laboratory conditions and report the results of experiments showing the effects of pollen nutrition on egg laying. These findings suggest that queen egg laying and worker physiology can be manipulated in this system through pollen nutrition, which is consistent with findings from field colonies. The results generated using this controlled, laboratory-based system suggest that worker physiology controls queen egg laying behavior. Additionally, the quantitative data generated in these experiments highlight the utility of the system for further use as a risk assessment tool.


Asunto(s)
Abejas/fisiología , Conducta Alimentaria/fisiología , Oviposición/fisiología , Polen , Animales , Femenino
9.
Sci Total Environ ; 612: 415-421, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28863372

RESUMEN

Organosilicon surfactants are the most potent adjuvants available for formulating and applying agricultural pesticides and fertilizers, household cleaning and personal care products, dental impressions and medicines. Risk assessment of pesticides, drugs or personal care products that takes into account only active ingredients without the other formulation ingredients and adjuvants commonly used in their application will miss important toxicity outcomes detrimental to non-target species including pollinators and humans. Over a billion pounds of organosilicon surfactants from all uses are produced globally per year, making this a major component of the chemical landscape to which bees and humans are exposed. These silicones, like most "inerts", are generally recognized as safe, have no mandated tolerances, and their residues are largely unmonitored. Lack of their public disclosure and adequate analytical methods constrains evaluation of their risk. Organosilicon surfactants, the most super-spreading and -penetrating adjuvants available, at relevant exposure levels impair honey bee learning, are acutely toxic, and in combination with bee viruses cause synergistic mortality. Organosilicon surfactants need to be regulated as a separate class of "inerts" from the more common silicones. In turn, impacts of organosilicon surfactant exposures on humans need to be evaluated. Silicones in their great diversity probably represent the single most ubiquitous environmental class of global synthetic pollutants. Do honey bees, a model environmental indicator organism, forewarn of hidden risks to humans of ubiquitous silicone exposures?


Asunto(s)
Abejas/efectos de los fármacos , Compuestos Orgánicos/toxicidad , Silicio/toxicidad , Tensoactivos/toxicidad , Agricultura , Animales , Cosméticos , Materiales Dentales , Humanos , Plaguicidas , Preparaciones Farmacéuticas , Medición de Riesgo
10.
Environ Sci Technol ; 51(19): 11412-11422, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28858486

RESUMEN

In chronic feeding assays, the common agrochemical inert formulant N-methyl-2-pyrrolidone (NMP) is at least 20 times more toxic to honey bee larvae than to adults, but the underlying cause of this difference is unknown. In other taxa, NMP is primarily detoxified via a cytochrome P450 mediated pathway. Using a LC-MS method, putative cytochrome P450 metabolites of NMP were identified and quantified in adults and larvae following chronic exposure to NMP. Major differences in the identities and quantities of the generated metabolites were observed between adults and larvae. One major difference was the higher percentage of the administered NMP recovered as the parent compound in larvae compared to adults. To further explore the apparent difference in metabolic capacity, a spectrofluorometric method was used to compare general cytochrome P450 enzyme activity by monitoring the transformation of a 7-ethoxycoumarin substrate. Higher microsomal levels of 7-ethoxycoumarin-O-deethylase activity in adult fat bodies suggests that the higher percentage of unmetabolized NMP in larvae relative to adults may be due to lower cytochrome P450 enzyme activity in fat bodies. Taken together, these results suggest that larvae may be less able to detoxify xenobiotics encountered in diet than adults, and these findings will help inform future risk assessment.


Asunto(s)
Abejas/metabolismo , Sistema Enzimático del Citocromo P-450/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Pirrolidinonas/toxicidad , Animales , Cumarinas , Larva
11.
J Econ Entomol ; 110(5): 1993-2001, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28961741

RESUMEN

Owing to the recent declines in honey bee (Apis mellifera L.) populations, there is a need for field and laboratory studies to investigate threats to pollinator health. This study examines the hypothesis that the organophosphate alternative, Rimon 0.83EC, can have consequences to honey bee health by combining newly acquired field residue data, laboratory bioassays, and colony level feeding studies. Following label rate applications of Rimon 0.83EC to apple trees, average residue concentrations of the active ingredient, novaluron, were found to be 3.38 ppm in tree-collected pollen. Residues of the major co-formulant in Rimon 0.83EC, N-methyl-2-pyrrolidone (NMP), were below the limit of detection in the field, but a growth chamber study described here found that NMP can persist in pollen for up to 7 d with average concentrations of 69.3 ppm. Concurrent larval rearing studies found novaluron and NMP to be toxic to developing honey bees at doses as low as 100 ppb and 100 ppm, respectively. Nucleus colony feeding studies found that chronic exposure to Rimon 0.83EC at doses as low as 200 ppm (18.6 ppm novaluron) can result in interruptions to brood production that can last for up to 2 wk after exposure. Taken together, these data indicate the use of Rimon 0.83EC on blooming flowers is a significant threat to honey bee reproduction, and suggest the need for more strict and clear usage guidelines.


Asunto(s)
Abejas/efectos de los fármacos , Insecticidas/toxicidad , Residuos de Plaguicidas/toxicidad , Compuestos de Fenilurea/toxicidad , Pirrolidinonas/toxicidad , Animales , Abejas/crecimiento & desarrollo , Insecticidas/análisis , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Residuos de Plaguicidas/análisis , Polen/química , Pirrolidinonas/análisis , Reproducción/efectos de los fármacos
12.
Sci Rep ; 7: 40499, 2017 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-28091574

RESUMEN

Honey bees are highly valued for their pollination services in agricultural settings, and recent declines in managed populations have caused concern. Colony losses following a major pollination event in the United States, almond pollination, have been characterized by brood mortality with specific symptoms, followed by eventual colony loss weeks later. In this study, we demonstrate that these symptoms can be produced by chronically exposing brood to both an organosilicone surfactant adjuvant (OSS) commonly used on many agricultural crops including wine grapes, tree nuts and tree fruits and exogenous viral pathogens by simulating a horizontal transmission event. Observed synergistic mortality occurred during the larval-pupal molt. Using q-PCR techniques to measure gene expression and viral levels in larvae taken prior to observed mortality at metamorphosis, we found that exposure to OSS and exogenous virus resulted in significantly heightened Black Queen Cell Virus (BQCV) titers and lower expression of a Toll 7-like-receptor associated with autophagic viral defense (Am18w). These results demonstrate that organosilicone spray adjuvants that are considered biologically inert potentiate viral pathogenicity in honey bee larvae, and guidelines for OSS use may be warranted.


Asunto(s)
Abejas/virología , Dicistroviridae/patogenicidad , Plaguicidas/toxicidad , Animales , Abejas/efectos de los fármacos , Dicistroviridae/efectos de los fármacos , Larva/efectos de los fármacos , Larva/virología , Compuestos de Organosilicio/química , Tensoactivos/química , Análisis de Supervivencia
13.
Front Public Health ; 4: 92, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27242985

RESUMEN

Agrochemical risk assessment that takes into account only pesticide active ingredients without the spray adjuvants commonly used in their application will miss important toxicity outcomes detrimental to non-target species, including humans. Lack of disclosure of adjuvant and formulation ingredients coupled with a lack of adequate analytical methods constrains the assessment of total chemical load on beneficial organisms and the environment. Adjuvants generally enhance the pesticidal efficacy and inadvertently the non-target effects of the active ingredient. Spray adjuvants are largely assumed to be biologically inert and are not registered by the USA EPA, leaving their regulation and monitoring to individual states. Organosilicone surfactants are the most potent adjuvants and super-penetrants available to growers. Based on the data for agrochemical applications to almonds from California Department of Pesticide Regulation, there has been increasing use of adjuvants, particularly organosilicone surfactants, during bloom when two-thirds of USA honey bee colonies are present. Increased tank mixing of these with ergosterol biosynthesis inhibitors and other fungicides and with insect growth regulator insecticides may be associated with recent USA honey bee declines. This database archives every application of a spray tank adjuvant with detail that is unprecedented globally. Organosilicone surfactants are good stand alone pesticides, toxic to bees, and are also present in drug and personal care products, particularly shampoos, and thus represent an important component of the chemical landscape to which pollinators and humans are exposed. This mini review is the first to possibly link spray adjuvant use with declining health of honey bee populations.

14.
Pestic Biochem Physiol ; 120: 27-35, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25987217

RESUMEN

Dr. Fumio Matsumura's legacy embraced a passion for exploring environmental impacts of agrochemicals on non-target species such as bees. Why most formulations are more toxic to bees than respective active ingredients and how pesticides interact to cause pollinator decline cannot be answered without understanding the prevailing environmental chemical background to which bees are exposed. Modern pesticide formulations and seed treatments, particularly when multiple active ingredients are blended, require proprietary adjuvants and inert ingredients to achieve high efficacy for targeted pests. Although we have found over 130 different pesticides and metabolites in beehive samples, no individual pesticide or amount correlates with recent bee declines. Recently we have shown that honey bees are sensitive to organosilicone surfactants, nonylphenol polyethoxylates and the solvent N-methyl-2-pyrrolidone (NMP), widespread co-formulants used in agrochemicals and frequent pollutants within the beehive. Effects include learning impairment for adult bees and chronic toxicity in larval feeding bioassays. Multi-billion pounds of formulation ingredients like NMP are used and released into US environments. These synthetic organic chemicals are generally recognized as safe, have no mandated tolerances, and residues remain largely unmonitored. In contrast to finding about 70% of the pesticide active ingredients searched for in our pesticide analysis of beehive samples, we have found 100% of the other formulation ingredients targeted for analysis. These 'inerts' overwhelm the chemical burden from active pesticide, drug and personal care ingredients with which they are formulated. Honey bees serve as an optimal terrestrial bioindicator to determine if 'the formulation and not just the dose makes the poison'.


Asunto(s)
Abejas/efectos de los fármacos , Compuestos de Organosilicio/toxicidad , Plaguicidas/toxicidad , Tensoactivos/toxicidad , Animales , Abejas/fisiología , Conducta Animal/efectos de los fármacos , Compuestos de Organosilicio/química , Plaguicidas/química , Tensoactivos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...