Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38277673

RESUMEN

Antibody-based therapeutics constitute a rapidly growing class of pharmaceutical compounds. However, monoclonal antibodies, which specifically engage only one target, often lack the mechanistic intricacy to treat complex diseases. To expand the utility of antibody therapies, significant efforts have been invested in designing multispecific antibodies, which engage multiple targets using a single molecule. These efforts have culminated in remarkable translational progress, including nine US Food and Drug Administration-approved multispecific antibodies, with countless others in various stages of preclinical or clinical development. In this review, we discuss several categories of multispecific antibodies that have achieved clinical approval or shown promise in earlier stages of development. We focus on the molecular mechanisms used by multispecific antibodies and how these mechanisms inform their customized design and formulation. In particular, we discuss multispecific antibodies that target multiple disease markers, multiparatopic antibodies, and immune-interfacing antibodies. Overall, these innovative multispecific antibody designs are fueling exciting advances across the immunotherapeutic landscape. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering , Volume 15 is June 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

2.
Cell Rep Methods ; 3(3): 100429, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-37056366

RESUMEN

Due to their critical functions in cell sensing and signal processing, membrane proteins are highly preferred as pharmacological targets, and antibody drugs constitute the fastest growing category of therapeutic agents on the pharmaceutical market. However, major limitations exist in developing antibodies that recognize complex, multipass transmembrane proteins, such as G-protein-coupled receptors (GPCRs). These challenges, largely due to difficulties with recombinant expression of multipass transmembrane proteins, can be overcome using whole-cell screening techniques, which enable presentation of the functional antigen in its native conformation. Here, we developed suspension cell-based whole-cell panning methodologies to screen for specific binders against GPCRs within a naive yeast-displayed antibody library. We implemented our strategy to discover high-affinity antibodies against four distinct GPCR target proteins, demonstrating the potential for our cell-based screening workflow to advance the discovery of antibody therapeutics targeting membrane proteins.


Asunto(s)
Anticuerpos , Proteínas de la Membrana , Antígenos , Receptores Acoplados a Proteínas G/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA