Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 10(1): 480, 2023 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-37481639

RESUMEN

Planted forests are critical to climate change mitigation and constitute a major supplier of timber/non-timber products and other ecosystem services. Globally, approximately 36% of planted forest area is located in East Asia. However, reliable records of the geographic distribution and tree species composition of these planted forests remain very limited. Here, based on extensive in situ and remote sensing data, as well as an ensemble modeling approach, we present the first spatial database of planted forests for East Asia, which consists of maps of the geographic distribution of planted forests and associated dominant tree genera. Of the predicted planted forest areas in East Asia (948,863 km2), China contributed 87%, most of which is located in the lowland tropical/subtropical regions, and Sichuan Basin. With 95% accuracy and an F1 score of 0.77, our spatially-continuous maps of planted forests enable accurate quantification of the role of planted forests in climate change mitigation. Our findings inform effective decision-making in forest conservation, management, and global restoration projects.

2.
Science ; 366(6469)2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31780529

RESUMEN

Our study quantified the global tree restoration potential and its associated carbon storage potential under existing climate conditions. Skidmore et al dispute our findings, using as reference a yearly estimation of carbon storage that could be reached by 2050. We provide a detailed answer highlighting misunderstandings in their interpretation, notably that we did not consider any time limit for the restoration process.


Asunto(s)
Cambio Climático , Árboles , Carbono , Clima , Factores de Tiempo
3.
Science ; 366(6463)2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31624184

RESUMEN

Our study quantified the global tree restoration potential and its associated carbon storage potential under existing climate conditions. We received multiple technical comments, both supporting and disputing our findings. We recognize that several issues raised in these comments are worthy of discussion. We therefore provide a detailed common answer where we show that our original estimations are accurate.


Asunto(s)
Clima , Árboles , Carbono , Cambio Climático
5.
Science ; 365(6448): 76-79, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31273120

RESUMEN

The restoration of trees remains among the most effective strategies for climate change mitigation. We mapped the global potential tree coverage to show that 4.4 billion hectares of canopy cover could exist under the current climate. Excluding existing trees and agricultural and urban areas, we found that there is room for an extra 0.9 billion hectares of canopy cover, which could store 205 gigatonnes of carbon in areas that would naturally support woodlands and forests. This highlights global tree restoration as our most effective climate change solution to date. However, climate change will alter this potential tree coverage. We estimate that if we cannot deviate from the current trajectory, the global potential canopy cover may shrink by ~223 million hectares by 2050, with the vast majority of losses occurring in the tropics. Our results highlight the opportunity of climate change mitigation through global tree restoration but also the urgent need for action.


Asunto(s)
Cambio Climático , Restauración y Remediación Ambiental , Árboles/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...