Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 175: 113141, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34836639

RESUMEN

Plastic waste is a ubiquitous form of marine pollution and recent studies have identified threats of plastic debris and the associated chemical compounds to wildlife. Sponges pump substantial quantities of water and are important in benthic-pelagic coupling, making them susceptible to interacting with such pollutants in the water column. Here, a method to detect common plastic-associated compounds including phthalates, a phthalate metabolite, bisphenol-A, and a brominated flame retardant in sponge tissue was developed. The method was applied to samples of Xestospongia muta and Niphates digitalis from a reef in the Florida Keys. All sponge samples had quantifiable levels of di(2-ethylhexyl) phthalate, with trace levels of the associated metabolite detected in some N. digitalis samples. There was no quantifiable detection of bisphenol-A, or the brominated flame retardant. This work is a preliminary assessment of the relationship between plastic marine debris and marine sponges.


Asunto(s)
Retardadores de Llama , Ácidos Ftálicos , Poríferos , Contaminantes Químicos del Agua , Animales , Plásticos/química , Poríferos/metabolismo , Contaminantes Químicos del Agua/análisis
2.
Microbiome ; 7(1): 124, 2019 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-31466521

RESUMEN

BACKGROUND: Sponges are important suspension-feeding members of reef communities, with the collective capacity to overturn the entire water column on shallow Caribbean reefs every day. The sponge-loop hypothesis suggests that sponges take up dissolved organic carbon (DOC) and, via assimilation and shedding of cells, return carbon to the reef ecosystem as particulate organic carbon (POC). Sponges host complex microbial communities within their tissues that may play a role in carbon and nutrient cycling within the sponge holobiont. To investigate this relationship, we paired microbial community characterization (16S rRNA analysis, Illumina Mi-Seq platform) with carbon (DOC, POC) and nutrient (PO4, NOx, NH4) flux data (specific filtration rate) for 10 common Caribbean sponge species at two distant sites (Florida Keys vs. Belize, ~ 1203 km apart). RESULTS: Distance-based linear modeling revealed weak relationships overall between symbiont structure and carbon and nutrient flux, suggesting that the observed differences in POC, DOC, PO4, and NOx flux among sponges are not caused by variations in the composition of symbiont communities. In contrast, significant correlations between symbiont structure and NH4 flux occurred consistently across the dataset. Further, several individual symbiont taxa (OTUs) exhibited relative abundances that correlated with NH4 flux, including one OTU affiliated with the ammonia-oxidizing genus Cenarchaeum. CONCLUSIONS: Combined, these results indicate that microbiome structure is uncoupled from sponge carbon cycling and does not explain variation in DOC uptake among Caribbean coral reef sponges. Accordingly, differential DOC assimilation by sponge cells or stable microbiome components may ultimately drive carbon flux in the sponge holobiont.


Asunto(s)
Carbono/metabolismo , Arrecifes de Coral , Microbiota , Nutrientes/metabolismo , Poríferos/microbiología , Animales , Archaea/clasificación , Archaea/aislamiento & purificación , Bacterias/clasificación , Bacterias/aislamiento & purificación , Belice , Región del Caribe , Florida
3.
PeerJ ; 6: e5744, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30294513

RESUMEN

The salt marsh periwinkle, Littorina irrorata, exhibits a spatial refuge from predation by climbing the stems of Spartina alterniflora in order to avoid benthic predators. Salt marsh periwinkles have a broad geographic distribution, and for many species, responses to predators also varies with biogeography. This study sought to determine if the geographical location of the home marsh influenced the response of periwinkles (climbing height) to blue crab predator cues both via air and water. Snails from Louisiana (LA) climbed higher in general than those from North Carolina (NC), regardless of chemical cue. However, LA snails climbed 11 cm higher in the presence of waterborne predators than control snails with no cue, while NC snails only climbed five cm higher in the same comparisons. Airborne chemical cue tended to have snails climbing at intermediate heights. These responses were significantly enhanced when both populations of snails were housed together. Periwinkle response to predator cues was stronger in LA than NC, and so it is possible that the behavioral response of these snails to predators varies with biogeography of the home marsh. Also interestingly, the results of this study also suggest that cue delivery is probably occurring via mechanisms other than water, and potentially via airborne cues. Therefore, salt marsh periwinkles likely respond to numerous cues that initiate behavioral responses, including airborne cues, and these responses may vary by home-marsh geography.

4.
Dis Aquat Organ ; 130(1): 25-36, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30154269

RESUMEN

The eastern oyster Crassostrea virginica provides a number of ecosystem services and is an important commercial fishery species along the US East and Gulf Coasts. Oyster populations have declined dramatically due to overharvesting, habitat loss, and disease. As restoration efforts and aquaculture of oysters continue to increase throughout their range, it is important to consider the impacts of a number of potential oyster pests, including the boring sponge Cliona spp. and the pea crab Zaops (Pinnotheres) ostreum, on oyster populations. Both of these have been demonstrated to reduce oyster growth, condition, and in some instances, reproductive output. Boring sponges in particular are a major concern for oyster growers and managers. Our monitoring efforts have suggested that pea crabs might be more prevalent in sponge-infested oysters; we therefore conducted an observational study to determine if there was any relationship between pea crab prevalence and sponge presence, and to examine whether the presence of both pests had synergistic effects on oyster condition. At 2 very different sample sites, North Carolina and New Jersey, oysters with 1 pest (i.e. boring sponge) were significantly more likely to have the second pest (i.e. pea crab) than the background population. Furthermore, sponge presence negatively affected oyster condition in North Carolina only, while pea crabs significantly reduced condition at both locations. When sponges and pea crabs were present together, the effects on oyster condition were additive. This study provides further evidence that interactions between an individual and a fouling/pest organism can alter oyster susceptibility to other parasites.


Asunto(s)
Braquiuros/fisiología , Ostreidae/fisiología , Poríferos/fisiología , Animales , North Carolina , Factores de Tiempo
5.
Dis Aquat Organ ; 117(1): 31-44, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26575154

RESUMEN

The boring sponge Cliona celata is a nuisance species that can have deleterious effects on eastern oyster Crassostrea virginica growth, condition, and survival. Surprisingly, however, these effects have not been well documented and when examined, results have been equi-vocal. In this study, we provide a direct comparison of growth, condition, and survival of sponge-colonized and uncolonized oysters in southeast North Carolina in 2 separate experiments. In the first experiment, sponge-colonized oysters exhibited significantly slower growth rates, reduced condition, and lower survival relative to uncolonized oysters, although results may have been confounded by oyster source. In the second experiment, using smaller oysters from the same source population, growth rate was again significantly reduced in colonized oysters relative to uncolonized oysters, however neither condition nor survival differed. In field surveys of the same population, colonized individuals across a range of sizes demonstrated significantly reduced condition. Further, condition index was negatively correlated with sponge biomass, which was positively correlated with oyster size, suggesting that the impact of the sponge changes with ontogeny. By investigating clearance rates, tissue isotopic and nutrient content, as well as caloric value, this study provides further evidence that sponge presence causes the oysters to divert energy into costly shell maintenance and repair at the expense of shell and somatic growth. Thus, although variable, our results demonstrate negative impacts of sponge infestation on oyster demographics, particularly as oysters grow larger.


Asunto(s)
Ostreidae/parasitología , Poríferos/fisiología , Animales , Interacciones Huésped-Parásitos
6.
PLoS One ; 8(5): e62573, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23667492

RESUMEN

Caribbean coral reefs have been transformed in the past few decades with the demise of reef-building corals, and sponges are now the dominant habitat-forming organisms on most reefs. Competing hypotheses propose that sponge communities are controlled primarily by predatory fishes (top-down) or by the availability of picoplankton to suspension-feeding sponges (bottom-up). We tested these hypotheses on Conch Reef, off Key Largo, Florida, by placing sponges inside and outside predator-excluding cages at sites with less and more planktonic food availability (15 m vs. 30 m depth). There was no evidence of a bottom-up effect on the growth of any of 5 sponge species, and 2 of 5 species grew more when caged at the shallow site with lower food abundance. There was, however, a strong effect of predation by fishes on sponge species that lacked chemical defenses. Sponges with chemical defenses grew slower than undefended species, demonstrating a resource trade-off between growth and the production of secondary metabolites. Surveys of the benthic community on Conch Reef similarly did not support a bottom-up effect, with higher sponge cover at the shallower depth. We conclude that the structure of sponge communities on Caribbean coral reefs is primarily top-down, and predict that removal of sponge predators by overfishing will shift communities toward faster-growing, undefended species that better compete for space with threatened reef-building corals.


Asunto(s)
Arrecifes de Coral , Cadena Alimentaria , Poríferos/fisiología , Análisis de Varianza , Animales , Florida , Dinámica Poblacional , Especificidad de la Especie , Temperatura , Movimientos del Agua
7.
Oecologia ; 131(1): 145-153, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28547504

RESUMEN

Benthic suspension feeders are important components of aquatic ecosystems, often dominating the use of space and influencing patterns of material cycling between the water column and benthos. Biomechanical theory predicts that feeding by these consumers is governed by the flux (i.e., product of food concentration and velocity) of particulate material to their feeding appendages. We performed a laboratory flume experiment to test how feeding by larval black flies (Simulium vittatum Zett.) responds to independent manipulations of flow and food concentration. We quantified larval body posture, flick rate of the labral fans, and ingestion rate as a function of two concentrations of a baker's yeast/chalk suspension (0.96 and 4.44 mg l-1) and five water velocities (20, 30, 45, 60, and 90 cm s-1). Using analysis of covariance, we found that both flick rate and ingestion rate increased in a decelerating manner with increasing velocity, while fan height decreased linearly with increasing velocity. In contrast, food concentration had no effect on any aspect of feeding behavior. Thus, although both velocity and food concentration contribute to particle flux, our results indicate that the two were not substitutable under the range of conditions tested here.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...