Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
medRxiv ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38826353

RESUMEN

Objective: Sarcoidosis is a granulomatous disease affecting the lungs in over 90% of patients. Qualitative assessment of chest CT by radiologists is standard clinical practice and reliable quantification of disease from CT would support ongoing efforts to identify sarcoidosis phenotypes. Standard imaging feature engineering techniques such as radiomics suffer from extreme sensitivity to image acquisition and processing, potentially impeding generalizability of research to clinical populations. In this work, we instead investigate approaches to engineering variogram-based features with the intent to identify a robust, generalizable pipeline for image quantification in the study of sarcoidosis. Approach: For a cohort of more than 300 individuals with sarcoidosis, we investigated 24 feature engineering pipelines differing by decisions for image registration to a template lung, empirical and model variogram estimation methods, and feature harmonization for CT scanner model, and subsequently 48 sets of phenotypes produced through unsupervised clustering. We then assessed sensitivity of engineered features, phenotypes produced through unsupervised clustering, and sarcoidosis disease signal strength to pipeline. Main results: We found that variogram features had low to mild association with scanner model and associations were reduced by image registration. For each feature type, features were also typically robust to all pipeline decisions except image registration. Strength of disease signal as measured by association with pulmonary function testing and some radiologist visual assessments was strong (optimistic AUC ≈ 0.9, p ≪ 0.0001 in models for architectural distortion, conglomerate mass, fibrotic abnormality, and traction bronchiectasis) and fairly consistent across engineering approaches regardless of registration and harmonization for CT scanner. Significance: Variogram-based features appear to be a suitable approach to image quantification in support of generalizable research in pulmonary sarcoidosis.

2.
ERJ Open Res ; 10(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38375425

RESUMEN

Introduction: Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial pneumonia marked by progressive lung fibrosis and a poor prognosis. Recent studies have highlighted the potential role of infection in the pathogenesis of IPF, and a prior association of the HLA-DQB1 gene with idiopathic fibrotic interstitial pneumonia (including IPF) has been reported. Owing to the important role that the human leukocyte antigen (HLA) region plays in the immune response, here we evaluated if HLA genetic variation was associated specifically with IPF risk. Methods: We performed a meta-analysis of associations of the HLA region with IPF risk in individuals of European ancestry from seven independent case-control studies of IPF (comprising 5159 cases and 27 459 controls, including a prior study of fibrotic interstitial pneumonia). Single nucleotide polymorphisms, classical HLA alleles and amino acids were analysed and signals meeting a region-wide association threshold of p<4.5×10-4 and a posterior probability of replication >90% were considered significant. We sought to replicate the previously reported HLA-DQB1 association in the subset of studies independent of the original report. Results: The meta-analysis of all seven studies identified four significant independent single nucleotide polymorphisms associated with IPF risk. However, none met the posterior probability for replication criterion. The HLA-DQB1 association was not replicated in the independent IPF studies. Conclusion: Variation in the HLA region was not consistently associated with risk in studies of IPF. However, this does not preclude the possibility that other genomic regions linked to the immune response may be involved in the aetiology of IPF.

3.
medRxiv ; 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38293162

RESUMEN

Background: Idiopathic pulmonary fibrosis (IPF) is a chronic lung condition that is more prevalent in males than females. The reasons for this are not fully understood, with differing environmental exposures due to historically sex-biased occupations, or diagnostic bias, being possible explanations. To date, over 20 independent genetic variants have been identified to be associated with IPF susceptibility, but these have been discovered when combining males and females. Our aim was to test for the presence of sex-specific associations with IPF susceptibility and assess whether there is a need to consider sex-specific effects when evaluating genetic risk in clinical prediction models for IPF. Methods: We performed genome-wide single nucleotide polymorphism (SNP)-by-sex interaction studies of IPF risk in six independent IPF case-control studies and combined them using inverse-variance weighted fixed effect meta-analysis. In total, 4,561 cases (1,280 females and 2,281 males) and 23,500 controls (8,360 females and 14,528 males) of European genetic ancestry were analysed. We used polygenic risk scores (PRS) to assess differences in genetic risk prediction between males and females. Findings: Three independent genetic association signals were identified. All showed a consistent direction of effect across all individual IPF studies and an opposite direction of effect in IPF susceptibility between females and males. None had been previously identified in IPF susceptibility genome-wide association studies (GWAS). The predictive accuracy of the PRSs were similar between males and females, regardless of whether using combined or sex-specific GWAS results. Interpretation: We prioritised three genetic variants whose effect on IPF risk may be modified by sex, however these require further study. We found no evidence that the predictive accuracy of common SNP-based PRSs varies significantly between males and females.

5.
Respir Res ; 24(1): 287, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978501

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a heterogeneous disease that is pathologically characterized by areas of normal-appearing lung parenchyma, active fibrosis (transition zones including fibroblastic foci) and dense fibrosis. Defining transcriptional differences between these pathologically heterogeneous regions of the IPF lung is critical to understanding the distribution and extent of fibrotic lung disease and identifying potential therapeutic targets. Application of a spatial transcriptomics platform would provide more detailed spatial resolution of transcriptional signals compared to previous single cell or bulk RNA-Seq studies. METHODS: We performed spatial transcriptomics using GeoMx Nanostring Digital Spatial Profiling on formalin-fixed paraffin-embedded (FFPE) tissue from 32 IPF and 12 control subjects and identified 231 regions of interest (ROIs). We compared normal-appearing lung parenchyma and airways between IPF and controls with histologically normal lung tissue, as well as histologically distinct regions within IPF (normal-appearing lung parenchyma, transition zones containing fibroblastic foci, areas of dense fibrosis, and honeycomb epithelium metaplasia). RESULTS: We identified 254 differentially expressed genes (DEGs) between IPF and controls in histologically normal-appearing regions of lung parenchyma; pathway analysis identified disease processes such as EIF2 signaling (important for cap-dependent mRNA translation), epithelial adherens junction signaling, HIF1α signaling, and integrin signaling. Within IPF, we identified 173 DEGs between transition and normal-appearing lung parenchyma and 198 DEGs between dense fibrosis and normal lung parenchyma; pathways dysregulated in both transition and dense fibrotic areas include EIF2 signaling pathway activation (upstream of endoplasmic reticulum (ER) stress proteins ATF4 and CHOP) and wound healing signaling pathway deactivation. Through cell deconvolution of transcriptome data and immunofluorescence staining, we confirmed loss of alveolar parenchymal signals (AGER, SFTPB, SFTPC), gain of secretory cell markers (SCGB3A2, MUC5B) as well as dysregulation of the upstream regulator ATF4, in histologically normal-appearing tissue in IPF. CONCLUSIONS: Our findings demonstrate that histologically normal-appearing regions from the IPF lung are transcriptionally distinct when compared to similar lung tissue from controls with histologically normal lung tissue, and that transition zones and areas of dense fibrosis within the IPF lung demonstrate activation of ER stress and deactivation of wound healing pathways.


Asunto(s)
Factor 2 Eucariótico de Iniciación , Fibrosis Pulmonar Idiopática , Humanos , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Transcriptoma , Fibrosis
6.
medRxiv ; 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37790375

RESUMEN

Background: Indoor and outdoor air pollution levels are associated with poor asthma outcomes in children. However, few studies have evaluated whether breathing zone pollutant levels associate with asthma outcomes. Objective: Determine breathing zone exposure levels of NO 2 , O 3 , total PM 10 and PM 10 constituents among children with exacerbation-prone asthma, and examine correspondence with in-home and community measurements and associations with outcomes. Methods: We assessed children's personal breathing zone exposures using wearable monitors. Personal exposures were compared to in-home and community measurements and tested for association with lung function, asthma control, and asthma exacerbations. Results: 81 children completed 219 monitoring sessions. Correlations between personal and community levels of PM 10 , NO 2 , and O 3 were poor, whereas personal PM 10 and NO 2 levels correlated with in-home measurements. However, in-home monitoring underdetected brown carbon (Personal:79%, Home:36.8%) and ETS (Personal:83.7%, Home:4.1%) personal exposures, and detected black carbon in participants without these personal exposures (Personal: 26.5%, Home: 96%). Personal exposures were not associated with lung function or asthma control. Children experiencing an asthma exacerbation within 60 days of personal exposure monitoring had 1.98, 2.21 and 2.04 times higher brown carbon (p<0.001), ETS (p=0.007), and endotoxin (p=0.012), respectively. These outcomes were not associated with community or in-home exposure levels. Conclusions: Monitoring pollutant levels in the breathing zone is essential to understand how exposures influence asthma outcomes, as agreement between personal and in-home monitors is limited. Inhaled exposure to PM 10 constituents modifies asthma exacerbation risk, suggesting efforts to limit these exposures among high-risk children may decrease their asthma burden. CLINICAL IMPLICATIONS: In-home and community monitoring of environmental pollutants may underestimate personal exposures. Levels of inhaled exposure to PM 10 constituents appear to strongly influence asthma exacerbation risk. Therefore, efforts should be made to mitigate these exposures. CAPSULE SUMMARY: Leveraging wearable, breathing-zone monitors, we show exposures to inhaled pollutants are poorly proxied by in-home and community monitors, among children with exacerbation-prone asthma. Inhaled exposure to multiple PM 10 constituents is associated with asthma exacerbation risk.

7.
J Autoimmun ; : 103122, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37865580

RESUMEN

Sarcoidosis is a complex systemic disease with clinical heterogeneity based on varying phenotypes and natural history. The detailed etiology of sarcoidosis remains unknown, but genetic predisposition as well as environmental exposures play a significant role in disease pathogenesis. We performed a comprehensive review of germline genetic (DNA) and transcriptomic (RNA) studies of sarcoidosis, including both previous studies and more recent findings. In this review, we provide an assessment of the following: genetic variants in sarcoidosis susceptibility and phenotypes, ancestry- and sex-specific genetic variants in sarcoidosis, shared genetic architecture between sarcoidosis and other diseases, and gene-environment interactions in sarcoidosis. We also highlight the unmet needs in sarcoidosis genetic studies, including the pressing requirement to include diverse populations and have consistent definitions of phenotypes in the sarcoidosis research community to help advance the application of genetic predisposition to sarcoidosis disease risk and manifestations.

8.
Sci Rep ; 13(1): 13862, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620507

RESUMEN

Quantitative assessment of emphysema in CT scans has mostly focused on calculating the percentage of lung tissue that is deemed abnormal based on a density thresholding strategy. However, this overall measure of disease burden discards virtually all the spatial information encoded in the scan that is implicitly utilized in a visual assessment. This simplification is likely grouping heterogenous disease patterns and is potentially obscuring clinical phenotypes and variable disease outcomes. To overcome this, several methods that attempt to quantify heterogeneity in emphysema distribution have been proposed. Here, we compare three of those: one based on estimating a power law for the size distribution of contiguous emphysema clusters, a second that looks at the number of emphysema-to-emphysema voxel adjacencies, and a third that applies a parametric spatial point process model to the emphysema voxel locations. This was done using data from 587 individuals from Phase 1 of COPDGene that had an inspiratory CT scan and plasma protein abundance measurements. The associations between these imaging metrics and visual assessment with clinical measures (FEV[Formula: see text], FEV[Formula: see text]-FVC ratio, etc.) and plasma protein biomarker levels were evaluated using a variety of regression models. Our results showed that a selection of spatial measures had the ability to discern heterogeneous patterns among CTs that had similar emphysema burdens. The most informative quantitative measure, average cluster size from the point process model, showed much stronger associations with nearly every clinical outcome examined than existing CT-derived emphysema metrics and visual assessment. Moreover, approximately 75% more plasma biomarkers were found to be associated with an emphysema heterogeneity phenotype when accounting for spatial clustering measures than when they were excluded.


Asunto(s)
Enfisema , Enfisema Pulmonar , Humanos , Enfisema Pulmonar/diagnóstico por imagen , Enfisema/diagnóstico por imagen , Benchmarking , Pulmón/diagnóstico por imagen , Análisis por Conglomerados
9.
medRxiv ; 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37546732

RESUMEN

Introduction: Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial pneumonia marked by progressive lung fibrosis and a poor prognosis. Recent studies have highlighted the potential role of infection in the pathogenesis of IPF and a prior association of the HLA-DQB1 gene with idiopathic fibrotic interstitial pneumonia (including IPF) has been reported. Due to the important role that the Human Leukocyte Antigen (HLA) region plays in the immune response, here we evaluated if HLA genetic variation was associated specifically with IPF risk. Methods: We performed a meta-analysis of associations of the HLA region with IPF risk in individuals of European ancestry from seven independent case-control studies of IPF (comprising a total of 5,159 cases and 27,459 controls, including the prior study of fibrotic interstitial pneumonia). Single nucleotide polymorphisms, classical HLA alleles and amino acids were analysed and signals meeting a region-wide association threshold p<4.5×10-4 and a posterior probability of replication >90% were considered significant. We sought to replicate the previously reported HLA-DQB1 association in the subset of studies independent of the original report. Results: The meta-analysis of all seven studies identified four significant independent single nucleotide polymorphisms associated with IPF risk. However, none met the posterior probability for replication criterion. The HLA-DQB1 association was not replicated in the independent IPF studies. Conclusion: Variation in the HLA region was not consistently associated with risk in studies of IPF. However, this does not preclude the possibility that other genomic regions linked to the immune response may be involved in the aetiology of IPF.

10.
Hum Mol Genet ; 32(16): 2669-2678, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37399103

RESUMEN

Sarcoidosis is a complex systemic disease. Our study aimed to (1) identify novel alleles associated with sarcoidosis susceptibility; (2) provide an in-depth evaluation of HLA alleles and sarcoidosis susceptibility and (3) integrate genetic and transcription data to identify risk loci that may more directly impact disease pathogenesis. We report a genome-wide association study of 1335 sarcoidosis cases and 1264 controls of European descent (EA) and investigate associated alleles in a study of African Americans (AA: 1487 cases and 1504 controls). The EA and AA cohort was recruited from multiple United States sites. HLA alleles were imputed and tested for association with sarcoidosis susceptibility. Expression quantitative locus and colocalization analysis were performed using a subset of subjects with transcriptome data. Forty-nine SNPs in the HLA region in HLA-DRA, -DRB9, -DRB5, -DQA1 and BRD2 genes were significantly associated with sarcoidosis susceptibility in EA, rs3129888 was also a risk variant for sarcoidosis in AA. Classical HLA alleles DRB1*0101, DQA1*0101 and DQB1*0501, which are highly correlated, were also associated with sarcoidosis. rs3135287 near HLA-DRA was associated with HLA-DRA expression in peripheral blood mononuclear cells and bronchoalveolar lavage from subjects and lung tissue and whole blood from GTEx. We identified six novel SNPs (out of the seven SNPs representing the 49 significant SNPs) and nine HLA alleles associated with sarcoidosis susceptibility in the largest EA population. We also replicated our findings in an AA population. Our study reiterates the potential role of antigen recognition and/or presentation HLA class II genes in sarcoidosis pathogenesis.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sarcoidosis , Humanos , Predisposición Genética a la Enfermedad , Cadenas alfa de HLA-DR/genética , Leucocitos Mononucleares , Sarcoidosis/genética , Cadenas HLA-DRB1/genética , Alelos
11.
Am J Respir Crit Care Med ; 208(7): 791-801, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37523715

RESUMEN

Rationale: In addition to rare genetic variants and the MUC5B locus, common genetic variants contribute to idiopathic pulmonary fibrosis (IPF) risk. The predictive power of common variants outside the MUC5B locus for IPF and interstitial lung abnormalities (ILAs) is unknown. Objectives: We tested the predictive value of IPF polygenic risk scores (PRSs) with and without the MUC5B region on IPF, ILA, and ILA progression. Methods: We developed PRSs that included (PRS-M5B) and excluded (PRS-NO-M5B) the MUC5B region (500-kb window around rs35705950-T) using an IPF genome-wide association study. We assessed PRS associations with area under the receiver operating characteristic curve (AUC) metrics for IPF, ILA, and ILA progression. Measurements and Main Results: We included 14,650 participants (1,970 IPF; 1,068 ILA) from six multi-ancestry population-based and case-control cohorts. In cases excluded from genome-wide association study, the PRS-M5B (odds ratio [OR] per SD of the score, 3.1; P = 7.1 × 10-95) and PRS-NO-M5B (OR per SD, 2.8; P = 2.5 × 10-87) were associated with IPF. Participants in the top PRS-NO-M5B quintile had ∼sevenfold odds for IPF compared with those in the first quintile. A clinical model predicted IPF (AUC, 0.61); rs35705950-T and PRS-NO-M5B demonstrated higher AUCs (0.73 and 0.7, respectively), and adding both genetic predictors to a clinical model yielded the highest performance (AUC, 0.81). The PRS-NO-M5B was associated with ILA (OR, 1.25) and ILA progression (OR, 1.16) in European ancestry participants. Conclusions: A common genetic variant risk score complements the MUC5B variant to identify individuals at high risk of interstitial lung abnormalities and pulmonary fibrosis.


Asunto(s)
Estudio de Asociación del Genoma Completo , Fibrosis Pulmonar Idiopática , Humanos , Fibrosis Pulmonar Idiopática/genética , Factores de Riesgo , Pulmón , Mucina 5B/genética , Predisposición Genética a la Enfermedad
12.
Ann Hum Genet ; 87(4): 184-195, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37221924

RESUMEN

Aggregate tests of rare variants are often employed to identify associated regions compared to sequentially testing each individual variant. When an aggregate test is significant, it is of interest to identify which rare variants are "driving" the association. We recently developed the rare variant influential filtering tool (RIFT) to identify influential rare variants and showed RIFT had higher true positive rates compared to other published methods. Here we use importance measures from the standard random forest (RF) and variable importance weighted RF (vi-RF) to identify influential variants. For very rare variants (minor allele frequency [MAF] < 0.001), the vi-RF:Accuracy method had the highest median true positive rate (TPR = 0.24; interquartile range [IQR]: 0.13, 0.42) followed by the RF:Accuracy method (TPR = 0.16; IQR: 0.07, 0.33) and both were superior to RIFT (TPR = 0.05; IQR: 0.02, 0.15). Among uncommon variants (0.001 < MAF < 0.03), the RF methods had higher true positive rates than RIFT while observing comparable false positive rates. Finally, we applied the RF methods to a targeted resequencing study in idiopathic pulmonary fibrosis (IPF), in which the vi-RF approach identified eight and seven variants in TERT and FAM13A, respectively. In summary, the vi-RF provides an improved, objective approach to identifying influential variants following a significant aggregate test. We have expanded our previously developed R package RIFT to include the random forest methods.


Asunto(s)
Fibrosis Pulmonar Idiopática , Bosques Aleatorios , Humanos , Frecuencia de los Genes , Análisis de Secuencia de ADN , Proteínas Activadoras de GTPasa
13.
Res Sq ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36778386

RESUMEN

Ever larger Structural Variant (SV) catalogs highlighting the diversity within and between populations help researchers better understand the links between SVs and disease. The identification of SVs from DNA sequence data is non-trivial and requires a balance between comprehensiveness and precision. Here we present a catalog of 355,667 SVs (59.34% novel) across autosomes and the X chromosome (50bp+) from 138,134 individuals in the diverse TOPMed consortium. We describe our methodologies for SV inference resulting in high variant quality and >90% allele concordance compared to long-read de-novo assemblies of well-characterized control samples. We demonstrate utility through significant associations between SVs and important various cardio-metabolic and hematologic traits. We have identified 690 SV hotspots and deserts and those that potentially impact the regulation of medically relevant genes. This catalog characterizes SVs across multiple populations and will serve as a valuable tool to understand the impact of SV on disease development and progression.

14.
bioRxiv ; 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36747810

RESUMEN

Ever larger Structural Variant (SV) catalogs highlighting the diversity within and between populations help researchers better understand the links between SVs and disease. The identification of SVs from DNA sequence data is non-trivial and requires a balance between comprehensiveness and precision. Here we present a catalog of 355,667 SVs (59.34% novel) across autosomes and the X chromosome (50bp+) from 138,134 individuals in the diverse TOPMed consortium. We describe our methodologies for SV inference resulting in high variant quality and >90% allele concordance compared to long-read de-novo assemblies of well-characterized control samples. We demonstrate utility through significant associations between SVs and important various cardio-metabolic and hemotologic traits. We have identified 690 SV hotspots and deserts and those that potentially impact the regulation of medically relevant genes. This catalog characterizes SVs across multiple populations and will serve as a valuable tool to understand the impact of SV on disease development and progression.

15.
Am J Respir Crit Care Med ; 207(5): 587-593, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36094461

RESUMEN

Rationale: Relatives of patients with familial interstitial pneumonia (FIP) are at increased risk for pulmonary fibrosis and develop preclinical pulmonary fibrosis (PrePF). Objectives: We defined the incidence and progression of new-onset PrePF and its relationship to survival among first-degree relatives of families with FIP. Methods: This is a cohort study of family members with FIP who were initially screened with a health questionnaire and chest high-resolution computed tomography (HRCT) scan, and approximately 4 years later, the evaluation was repeated. A total of 493 asymptomatic first-degree relatives of patients with FIP were evaluated at baseline, and 296 (60%) of the original subjects participated in the subsequent evaluation. Measurements and Main Results: The median interval between HRCTs was 3.9 years (interquartile range, 3.5-4.4 yr). A total of 252 subjects who agreed to repeat evaluation were originally determined not to have PrePF at baseline; 16 developed PrePF. A conservative estimate of the annual incidence of PrePF is 1,023 per 100,000 person-years (95% confidence interval, 511-1,831 per 100,000 person-years). Of 44 subjects with PrePF at baseline, 38.4% subjects had worsening dyspnea compared with 15.4% of those without PrePF (P = 0.002). Usual interstitial pneumonia by HRCT (P < 0.0002) and baseline quantitative fibrosis score (P < 0.001) are also associated with worsening dyspnea. PrePF at the initial screen is associated with decreased survival (P < 0.001). Conclusions: The incidence of PrePF in this at-risk population is at least 100-fold higher than that reported for sporadic idiopathic pulmonary fibrosis (IPF). Although PrePF and IPF represent distinct entities, our study demonstrates that PrePF, like IPF, is progressive and associated with decreased survival.


Asunto(s)
Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares Intersticiales , Humanos , Estudios de Cohortes , Incidencia , Disnea , Pulmón , Estudios Retrospectivos
16.
Am J Respir Cell Mol Biol ; 67(6): 632-640, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35972918

RESUMEN

Chronic beryllium disease (CBD) is a Th1 granulomatous lung disease preceded by sensitization to beryllium (BeS). We profiled the methylome, transcriptome, and selected proteins in the lung to identify molecular signatures and networks associated with BeS and CBD. BAL cell DNA and RNA were profiled using microarrays from CBD (n = 30), BeS (n = 30), and control subjects (n = 12). BAL fluid proteins were measured using Olink Immune Response Panel proteins from CBD (n = 22) and BeS (n = 22) subjects. Linear models identified features associated with CBD, adjusting for covariation and batch effects. Multiomic integration methods identified correlated features between datasets. We identified 1,546 differentially expressed genes in CBD versus control subjects and 204 in CBD versus BeS. Of the 101 shared transcripts, 24 have significant cis relationships between gene expression and DNA methylation, assessed using expression quantitative trait methylation analysis, including genes not previously identified in CBD. A multiomic model of top DNA methylation and gene expression features demonstrated that the first component separated CBD from other samples and the second component separated control subjects from remaining samples. The top features on component one were enriched for T-lymphocyte function, and the top features on component two were enriched for innate immune signaling. We identified six differentially abundant proteins in CBD versus BeS, with two (SIT1 and SH2D1A) selected as important RNA features in the multiomic model. Our integrated analysis of DNA methylation, gene expression, and proteins in the lung identified multiomic signatures of CBD that differentiated it from BeS and control subjects.


Asunto(s)
Beriliosis , Humanos , Beriliosis/genética , Linfocitos T , Lavado Broncoalveolar , Líquido del Lavado Bronquioalveolar , Inmunidad Innata/genética , ARN , Enfermedad Crónica
17.
Nat Hum Behav ; 6(11): 1577-1586, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35927319

RESUMEN

Common genetic variants explain less variation in complex phenotypes than inferred from family-based studies, and there is a debate on the source of this 'missing heritability'. We investigated the contribution of rare genetic variants to tobacco use with whole-genome sequences from up to 26,257 unrelated individuals of European ancestries and 11,743 individuals of African ancestries. Across four smoking traits, single-nucleotide-polymorphism-based heritability ([Formula: see text]) was estimated from 0.13 to 0.28 (s.e., 0.10-0.13) in European ancestries, with 35-74% of it attributable to rare variants with minor allele frequencies between 0.01% and 1%. These heritability estimates are 1.5-4 times higher than past estimates based on common variants alone and accounted for 60% to 100% of our pedigree-based estimates of narrow-sense heritability ([Formula: see text], 0.18-0.34). In the African ancestry samples, [Formula: see text] was estimated from 0.03 to 0.33 (s.e., 0.09-0.14) across the four smoking traits. These results suggest that rare variants are important contributors to the heritability of smoking.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Frecuencia de los Genes , Polimorfismo de Nucleótido Simple/genética , Fenotipo , Fumar/genética
18.
Respir Med ; 200: 106923, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35932543

RESUMEN

INTRODUCTION: Sarcoidosis is a granulomatous disorder thought to be caused by exposures in genetically susceptible individuals. This study investigated whether specific exposures were associated with different sarcoidosis phenotypes. METHODS: Extensive demographic, occupational and environmental exposure data was analyzed from subjects enrolled in the NHLBI Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) study. RESULTS: In patients with sarcoidosis, radiation exposure was significantly associated with an increased risk of cardiac sarcoidosis versus non-cardiac sarcoidosis. No exposures were significantly associated with pulmonary only disease versus extrapulmonary disease with or without pulmonary involvement, Scadding Stage II/III/IV versus Scadding Stage 0/I, acute or remitting disease versus non-acute or non-remitting disease, nor chronic versus non-chronic disease. Although not reaching statistically significance after adjustment for multiple comparisons, there were a number of exposures associated with specific disease phenotypes, including exposures where relationships to sarcoidosis have previously been described such as rural exposures and pesticide exposures. CONCLUSIONS: Radiation exposure may be a risk factor for cardiac sarcoidosis. Other exposures may also be associated with specific phenotypes and should be further explored. The study was limited by small groups of exposed subjects for individual exposures and multiple comparisons. The development of novel and innovative exposure assessment tools is needed.


Asunto(s)
Enfermedades Pulmonares , Exposición Profesional , Sarcoidosis , Deficiencia de alfa 1-Antitripsina , Exposición a Riesgos Ambientales/efectos adversos , Genómica , Humanos , Enfermedades Pulmonares/complicaciones , Exposición Profesional/efectos adversos , Sarcoidosis/etiología , Sarcoidosis/genética , Deficiencia de alfa 1-Antitripsina/complicaciones , Deficiencia de alfa 1-Antitripsina/epidemiología , Deficiencia de alfa 1-Antitripsina/genética
19.
Am J Respir Crit Care Med ; 206(10): 1259-1270, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-35816432

RESUMEN

Rationale: Common genetic variants have been associated with idiopathic pulmonary fibrosis (IPF). Objectives: To determine functional relevance of the 10 IPF-associated common genetic variants we previously identified. Methods: We performed expression quantitative trait loci (eQTL) and methylation quantitative trait loci (mQTL) mapping, followed by co-localization of eQTL and mQTL with genetic association signals and functional validation by luciferase reporter assays. Illumina multi-ethnic genotyping arrays, mRNA sequencing, and Illumina 850k methylation arrays were performed on lung tissue of participants with IPF (234 RNA and 345 DNA samples) and non-diseased controls (188 RNA and 202 DNA samples). Measurements and Main Results: Focusing on genetic variants within 10 IPF-associated genetic loci, we identified 27 eQTLs in controls and 24 eQTLs in cases (false-discovery-rate-adjusted P < 0.05). Among these signals, we identified associations of lead variants rs35705950 with expression of MUC5B and rs2076295 with expression of DSP in both cases and controls. mQTL analysis identified CpGs in gene bodies of MUC5B (cg17589883) and DSP (cg08964675) associated with the lead variants in these two loci. We also demonstrated strong co-localization of eQTL/mQTL and genetic signal in MUC5B (rs35705950) and DSP (rs2076295). Functional validation of the mQTL in MUC5B using luciferase reporter assays demonstrates that the CpG resides within a putative internal repressor element. Conclusions: We have established a relationship of the common IPF genetic risk variants rs35705950 and rs2076295 with respective changes in MUC5B and DSP expression and methylation. These results provide additional evidence that both MUC5B and DSP are involved in the etiology of IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Humanos , ADN , Metilación de ADN/genética , Expresión Génica , Predisposición Genética a la Enfermedad/genética , Fibrosis Pulmonar Idiopática/genética , Mucina 5B/genética , Sitios de Carácter Cuantitativo/genética , ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...