Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antibiotics (Basel) ; 12(4)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37107006

RESUMEN

Acinetobacter baumannii is a Gram-negative organism listed as an urgent threat pathogen by the World Health Organization (WHO). Carbapenem-resistant A. baumannii (CRAB), especially, present therapeutic challenges due to complex mechanisms of resistance to ß-lactams. One of the most important mechanisms is the production of ß-lactamase enzymes capable of hydrolyzing ß-lactam antibiotics. Co-expression of multiple classes of ß-lactamases is present in CRAB; therefore, the design and synthesis of "cross-class" inhibitors is an important strategy to preserve the efficacy of currently available antibiotics. To identify new, nonclassical ß-lactamase inhibitors, we previously identified a sulfonamidomethaneboronic acid CR167 active against Acinetobacter-derived class C ß-lactamases (ADC-7). The compound demonstrated affinity for ADC-7 with a Ki = 160 nM and proved to be able to decrease MIC values of ceftazidime and cefotaxime in different bacterial strains. Herein, we describe the activity of CR167 against other ß-lactamases in A. baumannii: the cefepime-hydrolysing class C extended-spectrum ß-lactamase (ESAC) ADC-33 and the carbapenem-hydrolyzing OXA-24/40 (class D). These investigations demonstrate CR167 as a valuable cross-class (C and D) inhibitor, and the paper describes our attempts to further improve its activity. Five chiral analogues of CR167 were rationally designed and synthesized. The structures of OXA-24/40 and ADC-33 in complex with CR167 and select chiral analogues were obtained. The structure activity relationships (SARs) are highlighted, offering insights into the main determinants for cross-class C/D inhibitors and impetus for novel drug design.

2.
Org Biomol Chem ; 19(30): 6687-6691, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34286797

RESUMEN

A straightforward concise synthesis of chiral non-racemic aliphatic α-boryl isocyanides, relay intermediates for boron-based bioactive molecules in multicomponent reactions, is presented. The short synthetic sequence comprises as key steps copper-catalysed asymmetric borylation of imines, simultaneous nitrogen formylation/boron-protecting group interconversion and the final formamide dehydration reaction.

3.
ACS Infect Dis ; 6(7): 1965-1975, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32502340

RESUMEN

Boronic acid transition state inhibitors (BATSIs) are known reversible covalent inhibitors of serine ß-lactamases. The selectivity and high potency of specific BATSIs bearing an amide side chain mimicking the ß-lactam's amide side chain are an established and recognized synthetic strategy. Herein, we describe a new class of BATSIs where the amide group is replaced by a bioisostere triazole; these compounds were designed as molecular probes. To this end, a library of 26 α-triazolylmethaneboronic acids was synthesized and tested against the clinically concerning Acinetobacter-derived cephalosporinase, ADC-7. In steady state analyses, these compounds demonstrated Ki values ranging from 90 nM to 38 µM (±10%). Five compounds were crystallized in complex with ADC-7 ß-lactamase, and all the crystal structures reveal the triazole is in the putative amide binding site, thus confirming the triazole-amide bioisosterism. The easy synthetic access of these new inhibitors as prototype scaffolds allows the insertion of a wide range of chemical groups able to explore the enzyme binding site and provides insights on the importance of specific residues in recognition and catalysis. The best inhibitor identified, compound 6q (Ki 90 nM), places a tolyl group near Arg340, making favorable cation-π interactions. Notably, the structure of 6q does not resemble the natural substrate of the ß-lactamase yet displays a pronounced inhibition activity, in addition to lowering the minimum inhibitory concentration (MIC) of ceftazidime against three bacterial strains expressing class C ß-lactamases. In summary, these observations validate the α-triazolylboronic acids as a promising template for further inhibitor design.


Asunto(s)
Acinetobacter baumannii , Inhibidores de beta-Lactamasas , Acinetobacter baumannii/metabolismo , Cefalosporinasa/genética , Cefalosporinasa/metabolismo , Relación Estructura-Actividad , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo
4.
Front Microbiol ; 11: 35, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117094

RESUMEN

Pseudomonas aeruginosa is a Gram-negative nosocomial pathogen, often causative agent of severe device-related infections, given its great capacity to form biofilm. P. aeruginosa finely regulates the expression of numerous virulence factors, including biofilm production, by Quorum Sensing (QS), a cell-to-cell communication mechanism used by many bacteria. Selective inhibition of QS-controlled pathogenicity without affecting bacterial growth may represent a novel promising strategy to overcome the well-known and widespread drug resistance of P. aeruginosa. In this study, we investigated the effects of SM23, a boronic acid derivate specifically designed as ß-lactamase inhibitor, on biofilm formation and virulence factors production by P. aeruginosa. Our results indicated that SM23: (1) inhibited biofilm development and production of several virulence factors, such as pyoverdine, elastase, and pyocyanin, without affecting bacterial growth; (2) decreased the levels of 3-oxo-C12-HSL and C4-HSL, two QS-related autoinducer molecules, in line with a dampened lasR/lasI system; (3) failed to bind to bacterial cells that had been preincubated with P. aeruginosa-conditioned medium; and (4) reduced both biofilm formation and pyoverdine production by P. aeruginosa onto endotracheal tubes, as assessed by a new in vitro model closely mimicking clinical settings. Taken together, our results indicate that, besides inhibiting ß-lactamase, SM23 can also act as powerful inhibitor of P. aeruginosa biofilm, suggesting that it may have a potential application in the prevention and treatment of biofilm-associated P. aeruginosa infections.

5.
ACS Infect Dis ; 4(3): 337-348, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29144725

RESUMEN

Boronic acids are attracting a lot of attention as ß-lactamase inhibitors, and in particular, compound S02030 ( Ki = 44 nM) proved to be a good lead compound against ADC-7 ( Acinetobacter-derived cephalosporinase), one of the most significant resistance determinants in A. baumannii. The atomic structure of the ADC-7/S02030 complex highlighted the importance of critical structural determinants for recognition of the boronic acids. Herein, to elucidate the role in recognition of the R2-carboxylate, which mimics the C3/C4 found in ß-lactams, we designed, synthesized, and characterized six derivatives of S02030 (3a). Out of the six compounds, the best inhibitors proved to be those with an explicit negative charge (compounds 3a-c, 3h, and 3j, Ki = 44-115 nM), which is in contrast to the derivatives where the negative charge is omitted, such as the amide derivative 3d ( Ki = 224 nM) and the hydroxyamide derivative 3e ( Ki = 155 nM). To develop a structural characterization of inhibitor binding in the active site, the X-ray crystal structures of ADC-7 in a complex with compounds 3c, SM23, and EC04 were determined. All three compounds share the same structural features as in S02030 but only differ in the carboxy-R2 side chain, thereby providing the opportunity of exploring the distinct binding mode of the negatively charged R2 side chain. This cephalosporinase demonstrates a high degree of versatility in recognition, employing different residues to directly interact with the carboxylate, thus suggesting the existence of a "carboxylate binding region" rather than a binding site in ADC enzymes. Furthermore, this class of compounds was tested against resistant clinical strains of A. baumannii and are effective at inhibiting bacterial growth in conjunction with a ß-lactam antibiotic.


Asunto(s)
Acinetobacter/enzimología , Ácidos Borónicos/química , Ácidos Borónicos/farmacología , Cefalosporinasa/química , Cefalosporinasa/metabolismo , Inhibidores de beta-Lactamasas/química , Inhibidores de beta-Lactamasas/farmacología , Sitios de Unión , Ácidos Borónicos/síntesis química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Unión Proteica , Conformación Proteica , Inhibidores de beta-Lactamasas/síntesis química
6.
Org Lett ; 18(11): 2762-5, 2016 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-27206072

RESUMEN

Pd(II)-catalyzed cross-dehydrogenative coupling (CDC) of methyl N-phthaloyl dehydroalanine esters with simple aromatic hydrocarbons is reported. The reaction, which involves the cleavage of two sp(2) C-H bonds followed by C-C bond formation, stereoselectively generates highly valuable Z-dehydrophenylalanine skeletons in a practical, versatile, and atom economical manner. In addition, a perfluorinated product was expediently converted into important nonproteinogenic amino acid building blocks through copper-catalyzed conjugate additions of boron, silicon, and hydride moieties.

7.
ChemSusChem ; 8(13): 2204-11, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26089244

RESUMEN

The direct syntheses of ureas, oxamides, 2-oxazolidinones, and benzoxazolones by the oxidative carbonylation of amines, ß-amino alcohols, and 2-aminophenols allows us to obtain high value added molecules, which have a large number of important applications in several fields, from very simple building blocks. We have found that it is possible to perform these transformations using the PdI2 /KI catalytic system in an ionic liquid, such as 1-butyl-3-methylimidazolium tetrafluoroborate, as the solvent, the solvent/catalyst system can be recycled several times with only a slight loss of activity, and the product can be recovered easily by crystallization.


Asunto(s)
Benzoxazoles/química , Ácido Oxámico/análogos & derivados , Oxazolidinonas/química , Urea/química , Aminas/química , Amino Alcoholes/química , Aminofenoles/química , Catálisis , Imidazoles/química , Líquidos Iónicos/química , Ácido Oxámico/química , Oxidación-Reducción , Paladio/química
8.
Chem Commun (Camb) ; 48(32): 3863-5, 2012 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-22407508

RESUMEN

Heavily substituted cyclopropane esters were prepared in high yields, complete diastereoselection and high (up to 96%) enantioselectivity. The reaction described herein entailed reacting 4-nitro-5-styrylisoxazoles, a class of cinnamate synthetic equivalent, with 2-bromomalonate esters under the catalysis of 5 mol% of a Cincona derived phase-transfer catalyst. The reaction allowed multi-gram preparation of desired products.


Asunto(s)
Ciclopropanos/química , Oxazoles/química , Catálisis , Ésteres , Oxazoles/síntesis química , Oxidación-Reducción , Estereoisomerismo
10.
J Am Chem Soc ; 131(28): 9614-5, 2009 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-19552421

RESUMEN

A novel organocatalytic formal [3 + 2] cycloaddition reaction with in situ generation of N-carbamoyl nitrones is presented. For the first time, N-Boc- and N-Cbz-protected isoxazolidines have been directly obtained as single diastereoisomers in generally high yields and enantiomeric excesses using mild reaction conditions and inexpensive, readily available Cinchona alkaloid quaternary ammonium salts as catalysts. Synthetic manipulations of the products provided highly valuable building blocks such as free isoxazolidines, a N-Boc-1,3-aminoalcohol, and a free delta-lactam. This report represents a pioneering work in the use of N-carbamoyl nitrones as electron-poor 1,3-dipoles and glutaconates as new dipolarophiles in asymmetric catalysis.


Asunto(s)
Óxidos de Nitrógeno/química , Compuestos Orgánicos/química , Catálisis , Estereoisomerismo , Sulfonas/química
13.
Chem Commun (Camb) ; (36): 4345-7, 2008 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-18802565

RESUMEN

The unprecedented use of phase-transfer catalysis (PTC) in an asymmetric hydrophosphonylation reaction allows the obtainment of a range of optically active alpha-amino phosphonic acid derivatives directly from alpha-amido sulfones.


Asunto(s)
Organofosfonatos/síntesis química , Sulfonas/química , Catálisis , Iminas/química , Estructura Molecular , Organofosfonatos/química , Transición de Fase , Estereoisomerismo
14.
Chemistry ; 13(29): 8338-51, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17705329

RESUMEN

Different malonates and beta-ketoesters can react with N-tert-butoxycarbonyl- (N-Boc) and N-benzyloxycarbonyl- (N-Cbz) protected alpha-amido sulfones in an organocatalytic asymmetric Mannich-type reaction. The reaction makes use of a simple and easily obtained phase-transfer catalyst and proceeds under very mild and user-friendly conditions. The optimised protocol avoids the preparation and the isolation of the relatively unstable N-Boc and N-Cbz imines that are generated in situ from the bench-stable alpha-amido sulfones. The corresponding Mannich bases are generally obtained in good yields and enantioselectivities, and can be readily transformed into key compounds, such as optically active beta3-amino acids in one easy step. Enantioenriched N-Boc and N-Cbz protected beta-amino acids that are suitable for peptide synthesis are also available from the Mannich adducts through simple manipulations. Control experiments showed the dual role of the enolate-catalyst ion pair in this reaction, as well as the crucial role of the presence of water to achieve high enantioselectivities.

15.
J Org Chem ; 71(26): 9869-72, 2006 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-17168611

RESUMEN

A study into the use of a chiral phase-transfer catalyst in conjunction with acetone cyanohydrin to effect the enantioselective formation of alpha-amino nitriles from alpha-amido sulfones is described. This novel catalytic asymmetric Strecker reaction is analyzed with regard to the possible mechanistic basis.


Asunto(s)
Nitrilos/síntesis química , Sulfonas/química , Carbonatos/química , Catálisis , Estructura Molecular , Nitrilos/química , Transición de Fase , Potasio/química , Estereoisomerismo , Agua/química
16.
J Org Chem ; 71(16): 6269-72, 2006 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-16872218

RESUMEN

A simple and efficient organocatalytic enantioselective hydrophosphonylation of imines to enantiomerically enriched alpha-amino phosphonates is reported. By using 10 mol % of quinine as the catalyst in the enantioselective addition of diethyl phosphite to N-Boc protected imines, alpha-amino phosphonates are obtained in moderate to good yields and with up to 94% ee.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...