Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 63(14): 1752-1760, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38967549

RESUMEN

The wildtype H-Ras protein functions as a molecular switch in a variety of cell signaling pathways, and mutations to key residues result in a constitutively active oncoprotein. However, there is some debate regarding the mechanism of the intrinsic GTPase activity of H-Ras. It has been hypothesized that ordered water molecules are coordinated at the active site by Q61, a highly transforming amino acid site, and Y32, a position that has not previously been investigated. Here, we examine the electrostatic contribution of the Y32 position to GTP hydrolysis by comparing the rate of GTP hydrolysis of Y32X mutants to the vibrational energy shift of each mutation measured by a nearby thiocyanate vibrational probe to estimate changes in the electrostatic environment caused by changes at the Y32 position. We further compared vibrational energy shifts for each mutation to the hydration potential of the respective side chain and demonstrated that Y32 is less critical for recruiting water molecules into the active site to promote hydrolysis than Q61. Our results show a clear interplay between a steric contribution from Y32 and an electrostatic contribution from Q61 that are both critical for intrinsic GTP hydrolysis.


Asunto(s)
Guanosina Trifosfato , Electricidad Estática , Tiocianatos , Hidrólisis , Tiocianatos/química , Tiocianatos/metabolismo , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/química , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Tirosina/química , Tirosina/metabolismo , Tirosina/genética , Mutación , Dominio Catalítico , Agua/química , Agua/metabolismo , Modelos Moleculares
2.
Biomolecules ; 9(5)2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-31072013

RESUMEN

Neuromelanin, the polymeric form of dopamine which accumulates in aging neuronal tissue, is increasingly recognized as a functional and critical component of a healthy and active adult human brain. Notorious in plant and insect literature for their ability to bind and retain amines for long periods of time, catecholamine polymers known colloquially as 'melanins' are nevertheless curiously absent from most textbooks regarding biochemistry, neuroscience, and evolution. Recent research has brought attention to the brain pigment due to its possible role in neurodegeneration. This linkage is best illustrated by Parkinson's disease, which is characterized by the loss of pigmented dopaminergic neurons and the 'white brain' pathological state. As such, the ability to determine the binding affinity of neurotoxic agents, as well as any potential specific endogenous ligands to neuromelanin are of interest and potential value. Neuromelanin has been shown to have saturable binding interactions with nicotine as monitored by a fluorimeter. This interaction provides a signal to allow for a competition-binding assay with target molecules which do not themselves produce signal. The current report establishes the viability of this competition assay toward three compounds with central relevance to Parkinson's disease. The Kd of binding toward neuromelanin by methyl-phenyl-pyridinium ion (MPP+), dopamine, and 6-hydroxydopamine were found to be 1 mM, 0.05 mM, and 0.1 mM, respectively in the current study. In addition, we demonstrate that 6-hydroxydopamine polymerizes to form neuromelanin granules in cultured dopaminergic neurons that treated with 2,4,5-trihydroxy-l-phenylalanine. Immunohistochemical analysis using fluor-tagged anti-dopamine antibodies suggests that the incorporation of 6-hydroxydopamine (following internalization and decarboxylation analogous to levodopa and dopamine) alters the localized distribution of bound dopamine in these cells.


Asunto(s)
Unión Competitiva , Bioensayo , Melaninas/metabolismo , Animales , Catecolaminas/metabolismo , Células Cultivadas , Humanos , Nicotina/metabolismo , Nicotina/farmacología , Oxidación-Reducción , Oxidopamina/metabolismo , Polimerizacion , Ratas , Transducción de Señal , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA