Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(17): e202401372, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38390783

RESUMEN

Herein, we present the first report on the synthesis of rare-earth complexes featuring a 9,10-diborataanthracene ligand. This 14-π-electron ligand is highly reductive and was previously used in small-molecule activation. Salt elimination reactions between dipotassium 9,10-diethyl-9,10-diborataanthracene [K2(DEDBA)] and [LnIII(η8-CotTIPS)(BH4)(thf)x] (CotTIPS=1,4-(iPr3Si)2C8H6) in a 1 : 1 ratio yielded heteroleptic sandwich complexes [K(η8-CotTIPS)LnIII(η6-DEDBA)] (Ln=Y, Dy, Er). These compounds form Lewis-base-free one-dimensional coordination polymers when crystallised from toluene. In contrast, reaction of [K2(DEDBA)] and [LnIII(η8-CotTIPS)(BH4)(thf)x] in a 1 : 2 ratio led to the formation of heteroleptic triple-decker complexes [(η8-CotTIPS)LnIII(µ-η6:η6-DEDBA)LnIII(η8-CotTIPS)] (Ln=Y, Dy, Er). Notably, these are not only the first lanthanide triple-decker compounds featuring a six-membered ring as a deck but also the first trivalent lanthanide triple-decker featuring a heterocycle in the coordination sphere. Magnetic investigations reveal that [K(η8-CotTIPS)LnIII(η6-DEDBA)] (Ln=Dy, Er) and [(η8-CotTIPS)ErIII(µ-η6:η6-DEDBA)ErIII(η8-CotTIPS)] exhibit Single-Molecule Magnet (SMM) behaviour. In the case of [(η8-CotTIPS)LnIII(µ-η6:η6-DEDBA)LnIII(η8-CotTIPS)] (Ln=Dy, Er), the introduction of a second near lanthanide ion results in strong antiferromagnetic interactions, allowing the enhancement of the magnetic characteristic of the system, compared to the quasi isolated counterpart. This research renews the overlooked coordination chemistry of the DBA ligand and expands it to encompass rare-earth elements.

2.
Dalton Trans ; 52(46): 17389-17397, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37942816

RESUMEN

[V2(HCyclal)2] is prepared by controlled oxidation of vanadium nanoparticles at 50 °C in toluene. The V(0) nanoparticles are synthesized in THF by reduction of VCl3 with lithium naphthalenide. They exhibit very small particle sizes of 1.2 ± 0.2 nm and a high reactivity (e.g. with air or water). By reaction of V(0) nanoparticles with the azacrown ether H4Cyclal, [V2(HCyclal)2] is obtained with deep green crystals and high yield. The title compound exhibits a V(III) dimer (V⋯V: 304.1(1) pm) with two deprotonated [HCyclal]3- ligands as anions. V(0) nanoparticles as well as the sole coordination of V(III) by a crown ether as the ligand and nitrogen as sole coordinating atom are shown for the first time. Magnetic measurements and computational results point to antiferromagnetic coupling within the V(III) couple, establishing an antiferromagnetic spin S = 1 dimer with the magnetic susceptibility determined by the thermal population of the total spin ranging from ST = 0 to ST = 2.

3.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239915

RESUMEN

Due to its outstanding properties, graphene has emerged as one of the most promising 2D materials in a large variety of research fields. Among the available fabrication protocols, chemical vapor deposition (CVD) enables the production of high quality single-layered large area graphene. To better understand the kinetics of CVD graphene growth, multiscale modeling approaches are sought after. Although a variety of models have been developed to study the growth mechanism, prior studies are either limited to very small systems, are forced to simplify the model to eliminate the fast process, or they simplify reactions. While it is possible to rationalize these approximations, it is important to note that they have non-trivial consequences on the overall growth of graphene. Therefore, a comprehensive understanding of the kinetics of graphene growth in CVD remains a challenge. Here, we introduce a kinetic Monte Carlo protocol that permits, for the first time, the representation of relevant reactions on the atomic scale, without additional approximations, while still reaching very long time and length scales of the simulation of graphene growth. The quantum-mechanics-based multiscale model, which links kinetic Monte Carlo growth processes with the rates of occurring chemical reactions, calculated from first principles makes it possible to investigate the contributions of the most important species in graphene growth. It permits the proper investigation of the role of carbon and its dimer in the growth process, thus indicating the carbon dimer to be the dominant species. The consideration of hydrogenation and dehydrogenation reactions enables us to correlate the quality of the material grown within the CVD control parameters and to demonstrate an important role of these reactions in the quality of the grown graphene in terms of its surface roughness, hydrogenation sites, and vacancy defects. The model developed is capable of providing additional insights to control the graphene growth mechanism on Cu(111), which may guide further experimental and theoretical developments.


Asunto(s)
Enfermedades Cardiovasculares , Grafito , Humanos , Carbono , Simulación por Computador , Gases
4.
Chemistry ; 29(22): e202203438, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-36807660

RESUMEN

In this report, we present the dinuclear copper(II) dimethylglyoxime (H2 dmg) complex [Cu2 (H2 dmg)(Hdmg)(dmg)]+ (1), which, in contrast to its mononuclear analogue [Cu(Hdmg)2 ] (2), is subject to a cooperativity-driven hydrolysis. The combined Lewis acidity of both copper centers increases the electrophilicity of the carbon atom in the bridging µ2 -O-N=C-group of H2 dmg and thus, facilitates the nucleophilic attack of H2 O. This hydrolysis yields butane-2,3-dione monoxime (3) and NH2 OH that, depending on the solvent, is then either oxidized or reduced. In ethanol, NH2 OH is reduced to NH4 + , yielding acetaldehyde as the oxidation product. In contrast, in CH3 CN, NH2 OH is oxidized by CuII to form N2 O and [Cu(CH3 CN)4 ]+ . Herein are presented the combined synthetic, theoretical, spectroscopic and spectrometric methods that indicate and establish the reaction pathway of this solvent-dependent reaction.

5.
Nanoscale Adv ; 4(21): 4554-4569, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36341292

RESUMEN

Platinum nanoparticles are efficient catalysts for different reactions, such as oxidation of carbon and nitrogen monoxides. Adsorption and interaction of oxygen with the nanoparticle surface, taking place under reaction conditions, determine not only the catalytic efficiency but also the stability of the nanoparticles against oxidation. In this study, platinum nanoparticles in oxygen environment are investigated by systematic screening of initial nanoparticle-oxygen configurations and employing density functional theory and a thermodynamics-based approach. The structures formed at low oxygen coverages are described by adsorption of atomic oxygen on the nanoparticles whereas at high coverages oxide-like species are formed. The relative stability of adsorption configurations at different oxygen coverages, including the phase of fully oxidized nanoparticles, is investigated by constructing p-T phase diagrams for the studied systems.

6.
Phys Chem Chem Phys ; 24(46): 28371-28380, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36385639

RESUMEN

We have investigated the self-assembly of the graphene nanoribbon molecular precursor 10,10'-dibromo-9,9'-bianthryl (DBBA) on Au(111) with frequency modulation scanning force microscopy (FM-SFM) at room temperature combined with ab initio calculations. For low molecular coverages, the molecules aggregate along the substrate herringbone reconstruction main directions while remaining mobile. At intermediate coverage, two phases coexist, zigzag stripes of monomer chains and decorated herringbones. For high coverage, the molecules assemble in a dimer-striped phase. The adsorption behaviour of DBBA molecules and their interactions are discussed and compared with the results from ab initio calculations.

7.
J Chem Phys ; 157(13): 134109, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36209012

RESUMEN

We report an approach to treat polarization effects in a one-dimensional (1D) environment using frozen-density embedding (FDE), suitable to compute response to electron loss or attachment as occurring in organic semiconductors during charge migration. The present work provides two key developments: (a) Local perturbations are computed avoiding an infinite repetition thereof and (b) a first-order equation-of-motion ansatz is used to compute polarization effects due to electron loss and attachment, ensuring an efficient calculation by avoiding open-shell calculations. In a first step, an unperturbed 1D molecular chain is equilibrated using FDE by translation of the center molecule. In a subsequent second step, long-range contributions are frozen and a local perturbation is introduced in the center subsystem. Freeze-thaw iterations are used to relax the electronic wavefunction of both the center subsystem and subsystems in an active region around the center subsystem, avoiding the need to translate the perturbation. The proposed scheme proves to be very efficient and allows for the calculation of charged tetraazaperopyrenes in 1D chains. Due to its efficiency, the new method is capable of providing wavefunction-based reference data relevant for electronic couplings in complex environments.

8.
Nanomaterials (Basel) ; 12(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36080001

RESUMEN

Although the CVD synthesis of graphene on Cu(111) is an industrial process of outstanding importance, its theoretical description and modeling are hampered by its multiscale nature and the large number of elementary reactions involved. In this work, we propose an analytical model of graphene nucleation and growth on Cu(111) surfaces based on the combination of kinetic nucleation theory and the DFT simulations of elementary steps. In the framework of the proposed model, the mechanism of graphene nucleation is analyzed with particular emphasis on the roles played by the two main feeding species, C and C2. Our analysis reveals unexpected patterns of graphene growth, not typical for classical nucleation theories. In addition, we show that the proposed theory allows for the reproduction of the experimentally observed characteristics of polycrystalline graphene samples in the most computationally efficient way.

9.
ACS Nano ; 16(8): 11742-11754, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35732039

RESUMEN

Individual single-walled carbon nanotubes with covalent sidewall defects have emerged as a class of photon sources whose photoluminescence spectra can be tailored by the carbon nanotube chirality and the attached functional group/molecule. Here we present electroluminescence spectroscopy data from single-tube devices based on (7, 5) carbon nanotubes, functionalized with dichlorobenzene molecules, and wired to graphene electrodes. We observe electrically generated, defect-induced emissions that are controllable by electrostatic gating and strongly red-shifted compared to emissions from pristine nanotubes. The defect-induced emissions are assigned to excitonic and trionic recombination processes by correlating electroluminescence excitation maps with electrical transport and photoluminescence data. At cryogenic conditions, additional gate-dependent emission lines appear, which are assigned to phonon-assisted hot-exciton electroluminescence from quasi-levels. Similar results were obtained with functionalized (6, 5) nanotubes. We also compare functionalized (7, 5) electroluminescence data with photoluminescence of pristine and functionalized (7, 5) nanotubes redox-doped using gold(III) chloride solution. This work shows that electroluminescence excitation is selective toward neutral defect-state configurations with the lowest transition energy, which in combination with gate-control over neutral versus charged defect-state emission leads to high spectral purity.

10.
J Phys Chem A ; 126(22): 3502-3510, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35617126

RESUMEN

The structures of platinum cluster anions Pt6--Pt13- have been investigated by trapped ion electron diffraction. Structures were assigned by comparing experimental and simulated scattering functions using candidate structures obtained by density functional theory computations, including spin-orbit coupling. We find a structural evolution from planar structures (Pt6-, Pt7-) and amorphous-like structures (Pt7--Pt9-) to structures based on distorted tetrahedra (Pt9--Pt11-). Finally, Pt12- and Pt13- are based on hcp fragments. While the structural parameters are well described by density functional theory computations for all clusters studied, the predicted lowest energy structure is found in the experiment only for Pt6-. For larger clusters, higher energy isomers are necessary to obtain a fit to the scattering data.

11.
Molecules ; 27(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35164179

RESUMEN

We report a theoretical study of the adsorption of a set of small molecules (C2H2, CO, CO2, O2, H2O, CH3OH, C2H5OH) on the metal centers of the "copper paddle-wheel"-a key structural motif of many MOFs. A systematic comparison between DFT of different rungs, single-reference post-HF methods (MP2, SOS-MP2, MP3, DLPNO-CCSD(T)), and multi-reference approaches (CASSCF, DCD-CAS(2), NEVPT2) is performed in order to find a methodology that correctly describes the complicated electronic structure of paddle-wheel structure together with a reasonable description of non-covalent interactions. Apart from comparison with literature data (experimental values wherever possible), benchmark calculations with DLPNO-MR-CCSD were also performed. Despite tested methods show qualitative agreement in the majority of cases, we showed and discussed reasons for quantitative differences as well as more fundamental problems of specific cases.

12.
J Colloid Interface Sci ; 605: 493-499, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34371421

RESUMEN

The interaction of proteins and peptides with inorganic surfaces is relevant in a wide array of technological applications. A rational approach to design peptides for specific surfaces would build on amino-acid and surface specific interaction models, which are difficult to characterize experimentally or by modeling. Even with such a model at hand, the large number of possible sequences and the large conformation space of peptides make comparative simulations challenging. Here we present a computational protocol, the effective implicit surface model (EISM), for efficient in silico evaluation of the binding affinity trends of peptides on parameterized surface, with a specific application to the widely studied gold surface. In EISM the peptide surface interactions are modeled with an amino-acid and surface specific implicit solvent model, which permits rapid exploration of the peptide conformational degrees of freedom. We demonstrate the parametrization of the model and compare the results with all-atom simulations and experimental results for specific peptides.


Asunto(s)
Oro , Péptidos , Adsorción , Proteínas , Solventes , Propiedades de Superficie
13.
Chemphyschem ; 23(1): e202100648, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34505748

RESUMEN

We present a spin-orbit configuration interaction program which has been tailored for the description of the magnetic properties of polynuclear metal complexes with partially filled d- and f-shells. The spin-orbit operators are directly included in the configuration interaction program based on Slater-determinants. The lowest states are obtained by a Block-Davidson-type diagonalisation. The usage of localised active orbitals enables the construction of start vectors from tensor products of single-center wave functions that already include spin-orbit interaction. This allows for an analysis of the role and the interplay of the different metal centres. Furthermore, in case of weak coupling of the metal centres these tensor products are already close to the final wave functions ensuring fast convergence. In combination with a two-layer hybrid parallelisation, this makes the program highly efficient. Based on the spin-orbit coupled wave functions, magnetic D-tensors, g-tensors and temperature-dependent susceptibilities can be calculated. The applicability and performance of the program is shown exemplarily on a trinuclear transition metal (CoII VII CoII ) complex.

14.
Chemistry ; 27(61): 15085-15094, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34597423

RESUMEN

We report three structurally related single ion Dy compounds using the pentadentate ligand 2,6-bis((E)-1-(2-(pyridin-2-yl)-hydrazineylidene)ethyl)pyridine (H2 dapp) [Dy(H2 dapp)(NO3 )2 ]NO3 (1), [Dy(H2 dapp)(OAc)2 ]Cl (2) and [Dy(H2 dapp)(NO3 )2 ]Cl0.92 (NO3 )0.08 (3). The (H2 dapp) occupies a helical twisted pentagonal equatorial arrangement with two anionic ligands in the axial positions. Further influence on the electronic and magnetic structure is provided by a closely associated counterion interacting with the central N-H group of the (H2 dapp). The slow relaxation of the magnetisation shows that the anionic acetates give the greatest slowing down of the magnetisation reversal. Further influence on the relaxation properties of compounds1 and 2 is the presence of short nitrate-nitrate intermolecular ligand contact opening further lattice relaxation pathways.

15.
Chemistry ; 27(61): 15127-15135, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34328235

RESUMEN

Heterometallic complexes, combining metals of the outer rims of the d-block, for example lanthanides(III) (Ln) and coinage metals(I) (M) are scarcely reported, synthetically challenging and highly interesting in terms of their interactions. In this context, we synthesized hetero-bimetallic Ln-M compounds ligated by the phosphine functionalized amidinate system (N,N'-bis[(2-diphenylphosphino)phenyl]formamidinate, "dpfam"). The resulting compounds [dpfam3 LnM][OTf] (Ln = La, Nd and M = Ag, Au) feature a close proximity of the two metal centres and were investigated experimentally by photoluminescence spectroscopy and quantum chemical calculations. The latter showed rare La-Au interactions for the first excited state.

16.
J Chem Phys ; 154(10): 104114, 2021 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-33722017

RESUMEN

We present the combination of wavefunction frozen-density embedding (FDE) with a periodic repetition in one dimension (1D) for molecular systems in the KOALA program. In this periodic orbital-uncoupled FDE ansatz, no wavefunction overlap is taken into account, and only the electron density of the active subsystem is computed explicitly. This density is relaxed in the presence of the environment potential, which is obtained by translating the updated active subsystem density, yielding a fully self-consistent solution at convergence. Treating only one subsystem explicitly, the method allows for the calculation of local properties in condensed molecular systems, while no orbital band structure is obtained preventing the application, e.g., to systems with metallic bonding. In order to illustrate possible applications of the new implementation, selected case studies are presented, ranging from ground-state dipole moments using configuration interaction methods via excitation energies using time-dependent density-functional theory to ionization potentials obtained from equation-of-motion correlation methods. Different levels of approximations are assessed, revealing that an active subsystem consisting of two or three molecules leads to results that are converged with respect to the environment contributions.

17.
Front Chem ; 8: 540, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733848

RESUMEN

The first dinuclear and trinuclear chromium(III) and dinuclear vanadium(III) complexes of N 4-R-substituted-3,5-di(2-pyridyl)-1,2,4-triazole (Rdpt) ligands have been prepared by solvothermal complexations under inert atmospheres, and characterized. The reactions of CrIII and VIII with adpt (R = amino) resulted in deamination of the ligand and yielded the dinuclear doubly-triazolate bridged complexes [ V 2 III (dpt -)2Cl4] (1) and [ Cr 2 III (dpt -)2Cl4] (2). In the case of the CrIII complex 2 this bridging results in a rare example of ferromagnetic coupling for a dinuclear CrIII compound. DFT studies confirm that in 2 the ferromagnetic coupling pathways dominate over the antiferromagnetic pathways, whereas in 1 the reverse occurs, consistent with the observed overall antiferromagnetic coupling in that case. It was also found that the use of different additives in the reaction allows the nuclearity of the CrIII product to be manipulated, giving either the dinuclear system, or the first example of a trinuclear circular helicate for a Rdpt complex, [ Cr 3 III (dpt)3Cl6]·1¾MeCN·»DCM (3). Reaction of N 4 -pydpt (R = 4-pyridyl) with VIII led to an unusual shift of the pyridyl substituent from N 4 to N 1 of the triazole, forming the ligand isomer N 1 -pydpt, and giving a dinuclear doubly-triazole bridged complex, [ V 2 III ( N 1 -pydpt)2Cl6]·2MeCN (4). Reaction with CrIII results in loss of the 4-pyridyl ring and a mixture of the di- and trinuclear complexes, 2 and 3. Interestingly, partial oxidation of the VIII in dinuclear complex 4 to vanadyl VIV=O was identified by crystallographic analysis of partially oxidized single crystals, [(VIVO)0.84(VIII)1.16( N 1 -pydpt)2Cl5.16]·0.84H2O·1.16MeCN (5).

18.
J Phys Chem A ; 123(51): 10940-10946, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31769986

RESUMEN

We present a study of the structural evolution of palladium cluster anions in a size range from 55 to 147 atoms using a combination of trapped ion electron diffraction and density functional theory computations. We show that Pdn- clusters (n = 55, 65, 75, 85, 95, 105, and 147) change from an icosahedral motif at Pd55- to the bulk fcc motif at Pd147-. This size-dependent structure transition is probed experimentally at a temperature of 95 K and characterized by a continuously increasing fraction of fcc isomers over the considered size range showing a crossover to the fcc motif at n ≈ 90.

19.
Langmuir ; 35(25): 8472-8481, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31198043

RESUMEN

Owing to their extraordinary magnetic properties and low-cost production, iron oxide nanoparticles (IONs) are in the focus of research. In order to better understand interactions of IONs with biomolecules, a tool for the prediction of the propensity of different peptides to interact with IONs is of great value. We present an effective implicit surface model (EISM), which includes several interaction models. Electrostatic interactions, van der Waals interactions, and entropic effects are considered for the theoretical calculations. However, the most important parameter, a surface accessible area force field contribution term, derives directly from experimental results on the interactions of IONs and peptides. Data from binding experiments of ION agglomerates to different peptides immobilized on cellulose membranes have been used to parameterize the model. The work was carried out under defined environmental conditions; hence, effects because of changes, for example structure or solubility by changing the surroundings, are not included. EISM enables researchers to predict the binding of peptides to IONs, which we then verify with further peptide array experiments in an iterative optimization process also presented here. Negatively charged peptides were identified as best binders for IONs in Tris buffer. Furthermore, we investigated the constitution of peptides and how the amount and position of several amino acid side chains affect peptide-binding. The incorporation of glycine leads to higher binding scores compared to the incorporation of cysteine in negatively charged peptides.


Asunto(s)
Compuestos Férricos/química , Compuestos Férricos/metabolismo , Péptidos/química , Péptidos/metabolismo , Unión Proteica
20.
J Phys Chem A ; 122(17): 4357-4365, 2018 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-29630381

RESUMEN

We performed a comprehensive gas-phase experimental and quantum-chemical study of the binding properties of molecular oxygen to iron and manganese porphyrin anions. Temperature-dependent ion-molecule reaction kinetics as probed in a Fourier-transform ion-cyclotron resonance mass spectrometer reveal that molecular oxygen is bound by, respectively, 40.8 ± 1.4 and 67.4 ± 2.2 kJ mol-1 to the FeII or MnII centers of isolated tetra(4-sulfonatophenyl)metalloporphyrin tetraanions. In contrast, FeIII and MnIII trianion homologues were found to be much less reactive-indicating an upper bound to their dioxygen binding energies of 34 kJ mol-1. We modeled the corresponding O2 adsorbates at the density functional theory and CASPT2 levels. These quantum-chemical calculations verified the stronger O2 binding on the FeII or MnII centers and suggested that O2 binds as a superoxide anion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...