Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Ophthalmol Case Rep ; 30: 101818, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36865090

RESUMEN

Purpose: To report the case of a 69-year-old male who was referred for a previously unidentified pigmented iris lesion with surrounding iris atrophy masquerading as an iris melanoma. Observations: A sharply demarcated pigmented lesion extending from the trabecular meshwork to the pupillary margin was identified in the left eye. There was adjacent iris stromal atrophy. Testing was consistent with a cyst-like lesion. The patient later described a prior episode of ipsilateral herpes zoster involving the ophthalmic division of cranial nerve five. Conclusions and Importance: Iris cysts present an uncommon iris tumor, often going unrecognized especially if located on the posterior iris surface. When they present acutely, as in this case where a previously unidentified cyst was revealed following zoster-induced sectoral iris atrophy, these pigmented lesions can be concerning for malignancy. Accurately identifying iris melanomas and differentiating them from benign iris lesions is imperative.

2.
JCI Insight ; 7(12)2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35579952

RESUMEN

Macrophages play a crucial role in the inflammatory response to the human stomach pathogen Helicobacter pylori, which infects half of the world's population and causes gastric cancer. Recent studies have highlighted the importance of macrophage immunometabolism in their activation state and function. We have demonstrated that the cysteine-producing enzyme cystathionine γ-lyase (CTH) is upregulated in humans and mice with H. pylori infection. Here, we show that induction of CTH in macrophages by H. pylori promoted persistent inflammation. Cth-/- mice had reduced macrophage and T cell activation in H. pylori-infected tissues, an altered metabolome, and decreased enrichment of immune-associated gene networks, culminating in decreased H. pylori-induced gastritis. CTH is downstream of the proposed antiinflammatory molecule, S-adenosylmethionine (SAM). Whereas Cth-/- mice exhibited gastric SAM accumulation, WT mice treated with SAM did not display protection against H. pylori-induced inflammation. Instead, we demonstrated that Cth-deficient macrophages exhibited alterations in the proteome, decreased NF-κB activation, diminished expression of macrophage activation markers, and impaired oxidative phosphorylation and glycolysis. Thus, through altering cellular respiration, CTH is a key enhancer of macrophage activation, contributing to a pathogenic inflammatory response that is the universal precursor for the development of H. pylori-induced gastric disease.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Animales , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones
3.
Gastroenterology ; 162(3): 813-827.e8, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34767785

RESUMEN

BACKGROUND & AIMS: Because inflammatory bowel disease is increasing worldwide and can lead to colitis-associated carcinoma (CAC), new interventions are needed. We have shown that spermine oxidase (SMOX), which generates spermidine (Spd), regulates colitis. Here we determined whether Spd treatment reduces colitis and carcinogenesis. METHODS: SMOX was quantified in human colitis and associated dysplasia using quantitative reverse-transcription polymerase chain reaction and immunohistochemistry. We used wild-type (WT) and Smox-/- C57BL/6 mice treated with dextran sulfate sodium (DSS) or azoxymethane (AOM)-DSS as models of colitis and CAC, respectively. Mice with epithelial-specific deletion of Apc were used as a model of sporadic colon cancer. Animals were supplemented or not with Spd in the drinking water. Colonic polyamines, inflammation, tumorigenesis, transcriptomes, and microbiomes were assessed. RESULTS: SMOX messenger RNA levels were decreased in human ulcerative colitis tissues and inversely correlated with disease activity, and SMOX protein was reduced in colitis-associated dysplasia. DSS colitis and AOM-DSS-induced dysplasia and tumorigenesis were worsened in Smox-/- vs WT mice and improved in both genotypes with Spd. Tumor development caused by Apc deletion was also reduced by Spd. Smox deletion and AOM-DSS treatment were both strongly associated with increased expression of α-defensins, which was reduced by Spd. A shift in the microbiome, with reduced abundance of Prevotella and increased Proteobacteria and Deferribacteres, occurred in Smox-/- mice and was reversed with Spd. CONCLUSIONS: Loss of SMOX is associated with exacerbated colitis and CAC, increased α-defensin expression, and dysbiosis of the microbiome. Spd supplementation reverses these phenotypes, indicating that it has potential as an adjunctive treatment for colitis and chemopreventive for colon carcinogenesis.


Asunto(s)
Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Colitis/genética , Neoplasias del Colon/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Espermidina/uso terapéutico , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Azoximetano , Colitis/inducido químicamente , Colitis/enzimología , Colitis/prevención & control , Colitis Ulcerosa/enzimología , Colitis Ulcerosa/genética , Colon/enzimología , Colon/patología , Neoplasias del Colon/prevención & control , Sulfato de Dextran , Microbioma Gastrointestinal/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Mucosa Intestinal/enzimología , Mucosa Intestinal/patología , Masculino , Ratones , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Lesiones Precancerosas/enzimología , Factores Protectores , ARN Mensajero/metabolismo , Índice de Severidad de la Enfermedad , Espermidina/metabolismo , Espermidina/farmacología , Pérdida de Peso/efectos de los fármacos , alfa-Defensinas/genética , alfa-Defensinas/metabolismo , Poliamino Oxidasa
4.
Gastroenterology ; 160(4): 1256-1268.e9, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33189701

RESUMEN

BACKGROUND & AIMS: Inflammation in the gastrointestinal tract may lead to the development of cancer. Dicarbonyl electrophiles, such as isolevuglandins (isoLGs), are generated from lipid peroxidation during the inflammatory response and form covalent adducts with amine-containing macromolecules. Thus, we sought to determine the role of dicarbonyl electrophiles in inflammation-associated carcinogenesis. METHODS: The formation of isoLG adducts was analyzed in the gastric tissues of patients infected with Helicobacter pylori from gastritis to precancerous intestinal metaplasia, in human gastric organoids, and in patients with colitis and colitis-associated carcinoma (CAC). The effect on cancer development of a potent scavenger of dicarbonyl electrophiles, 5-ethyl-2-hydroxybenzylamine (EtHOBA), was determined in transgenic FVB/N insulin-gastrin (INS-GAS) mice and Mongolian gerbils as models of H pylori-induced carcinogenesis and in C57BL/6 mice treated with azoxymethane-dextran sulfate sodium as a model of CAC. The effect of EtHOBA on mutations in gastric epithelial cells of H pylori-infected INS-GAS mice was assessed by whole-exome sequencing. RESULTS: We show increased isoLG adducts in gastric epithelial cell nuclei in patients with gastritis and intestinal metaplasia and in human gastric organoids infected with H pylori. EtHOBA inhibited gastric carcinoma in infected INS-GAS mice and gerbils and attenuated isoLG adducts, DNA damage, and somatic mutation frequency. Additionally, isoLG adducts were elevated in tissues from patients with colitis, colitis-associated dysplasia, and CAC as well as in dysplastic tumors of C57BL/6 mice treated with azoxymethane-dextran sulfate sodium. In this model, EtHOBA significantly reduced adduct formation, tumorigenesis, and dysplasia severity. CONCLUSIONS: Dicarbonyl electrophiles represent a link between inflammation and somatic genomic alterations and are thus key targets for cancer chemoprevention.


Asunto(s)
Transformación Celular Neoplásica/inmunología , Neoplasias Asociadas a Colitis/inmunología , Lípidos/inmunología , Lesiones Precancerosas/inmunología , Neoplasias Gástricas/inmunología , Animales , Bencilaminas/farmacología , Bencilaminas/uso terapéutico , Núcleo Celular/metabolismo , Transformación Celular Neoplásica/efectos de los fármacos , Neoplasias Asociadas a Colitis/microbiología , Neoplasias Asociadas a Colitis/patología , Neoplasias Asociadas a Colitis/prevención & control , Modelos Animales de Enfermedad , Células Epiteliales , Mucosa Gástrica/citología , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/inmunología , Mucosa Gástrica/patología , Gastritis/inmunología , Gastritis/microbiología , Gastritis/patología , Gerbillinae , Infecciones por Helicobacter/inmunología , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Helicobacter pylori/inmunología , Helicobacter pylori/aislamiento & purificación , Humanos , Lípidos/antagonistas & inhibidores , Metaplasia/inmunología , Metaplasia/microbiología , Metaplasia/patología , Ratones , Ratones Transgénicos , Organoides , Lesiones Precancerosas/tratamiento farmacológico , Lesiones Precancerosas/microbiología , Lesiones Precancerosas/patología , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología , Neoplasias Gástricas/prevención & control
5.
Cell Rep ; 33(11): 108510, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33326776

RESUMEN

Innate responses of myeloid cells defend against pathogenic bacteria via inducible effectors. Deoxyhypusine synthase (DHPS) catalyzes the transfer of the N-moiety of spermidine to the lysine-50 residue of eukaryotic translation initiation factor 5A (EIF5A) to form the amino acid hypusine. Hypusinated EIF5A (EIF5AHyp) transports specific mRNAs to ribosomes for translation. We show that DHPS is induced in macrophages by two gastrointestinal pathogens, Helicobacter pylori and Citrobacter rodentium, resulting in enhanced hypusination of EIF5A. EIF5AHyp was also increased in gastric macrophages from patients with H. pylori gastritis. Furthermore, we identify the bacteria-induced immune effectors regulated by hypusination. This set of proteins includes essential constituents of antimicrobial response and autophagy. Mice with myeloid cell-specific deletion of Dhps exhibit reduced EIF5AHyp in macrophages and increased bacterial burden and inflammation. Thus, regulation of translation through hypusination is a critical hallmark of the defense of eukaryotic hosts against pathogenic bacteria.


Asunto(s)
Antiinfecciosos/uso terapéutico , Lisina/análogos & derivados , Macrófagos/inmunología , Animales , Antiinfecciosos/farmacología , Modelos Animales de Enfermedad , Humanos , Lisina/uso terapéutico , Ratones
6.
Oncogene ; 39(22): 4465-4474, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32350444

RESUMEN

Helicobacter pylori infection is the main risk factor for the development of gastric cancer, the third leading cause of cancer death worldwide. H. pylori colonizes the human gastric mucosa and persists for decades. The inflammatory response is ineffective in clearing the infection, leading to disease progression that may result in gastric adenocarcinoma. We have shown that polyamines are regulators of the host response to H. pylori, and that spermine oxidase (SMOX), which metabolizes the polyamine spermine into spermidine plus H2O2, is associated with increased human gastric cancer risk. We now used a molecular approach to directly address the role of SMOX, and demonstrate that Smox-deficient mice exhibit significant reductions of gastric spermidine levels and H. pylori-induced inflammation. Proteomic analysis revealed that cancer was the most significantly altered functional pathway in Smox-/- gastric organoids. Moreover, there was also less DNA damage and ß-catenin activation in H. pylori-infected Smox-/- mice or gastric organoids, compared to infected wild-type animals or gastroids. The link between SMOX and ß-catenin activation was confirmed in human gastric organoids that were treated with a novel SMOX inhibitor. These findings indicate that SMOX promotes H. pylori-induced carcinogenesis by causing inflammation, DNA damage, and activation of ß-catenin signaling.


Asunto(s)
Adenocarcinoma/etiología , Daño del ADN , Gastritis/enzimología , Infecciones por Helicobacter/enzimología , Helicobacter pylori/patogenicidad , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/fisiología , Espermina/metabolismo , Neoplasias Gástricas/etiología , Adenocarcinoma/microbiología , Animales , Transformación Celular Neoplásica , Gastritis/genética , Gastritis/microbiología , Gastritis/patología , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Organoides , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/deficiencia , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Proteoma , ARN Mensajero/biosíntesis , Transducción de Señal , Espermidina/biosíntesis , Neoplasias Gástricas/microbiología , beta Catenina/fisiología , Poliamino Oxidasa
7.
mBio ; 10(5)2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31662455

RESUMEN

The reverse transsulfuration pathway is the major route for the metabolism of sulfur-containing amino acids. The role of this metabolic pathway in macrophage response and function is unknown. We show that the enzyme cystathionine γ-lyase (CTH) is induced in macrophages infected with pathogenic bacteria through signaling involving phosphatidylinositol 3-kinase (PI3K)/MTOR and the transcription factor SP1. This results in the synthesis of cystathionine, which facilitates the survival of pathogens within myeloid cells. Our data demonstrate that the expression of CTH leads to defective macrophage activation by (i) dysregulation of polyamine metabolism by depletion of S-adenosylmethionine, resulting in immunosuppressive putrescine accumulation and inhibition of spermidine and spermine synthesis, and (ii) increased histone H3K9, H3K27, and H3K36 di/trimethylation, which is associated with gene expression silencing. Thus, CTH is a pivotal enzyme of the innate immune response that disrupts host defense. The induction of the reverse transsulfuration pathway by bacterial pathogens can be considered an unrecognized mechanism for immune escape.IMPORTANCE Macrophages are professional immune cells that ingest and kill microbes. In this study, we show that different pathogenic bacteria induce the expression of cystathionine γ-lyase (CTH) in macrophages. This enzyme is involved in a metabolic pathway called the reverse transsulfuration pathway, which leads to the production of numerous metabolites, including cystathionine. Phagocytized bacteria use cystathionine to better survive in macrophages. In addition, the induction of CTH results in dysregulation of the metabolism of polyamines, which in turn dampens the proinflammatory response of macrophages. In conclusion, pathogenic bacteria can evade the host immune response by inducing CTH in macrophages.


Asunto(s)
Bacterias/inmunología , Bacterias/metabolismo , Inmunidad Innata , Macrófagos/metabolismo , Redes y Vías Metabólicas/fisiología , Azufre/metabolismo , Animales , Bacterias/patogenicidad , Silenciador del Gen , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Histonas/metabolismo , Humanos , Evasión Inmune , Inmunoglobulinas , Macrófagos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Poliaminas/metabolismo , Células RAW 264.7 , Espermidina/metabolismo , Espermina/metabolismo , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...