Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurosurg Pediatr ; 29(2): 218-224, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34678779

RESUMEN

OBJECTIVE: The underlying biomechanical differences between the pediatric and adult cervical spine are incompletely understood. Computational spine modeling can address that knowledge gap. Using a computational method known as finite element modeling, the authors describe the creation and evaluation of a complete pediatric cervical spine model. METHODS: Using a thin-slice CT scan of the cervical spine from a 5-year-old boy, a 3D model was created for finite element analysis. The material properties and boundary and loading conditions were created and model analysis performed using open-source software. Because the precise material properties of the pediatric cervical spine are not known, a published parametric approach of scaling adult properties by 50%, 25%, and 10% was used. Each scaled finite element model (FEM) underwent two types of simulations for pediatric cadaver testing (axial tension and cardinal ranges of motion [ROMs]) to assess axial stiffness, ROM, and facet joint force (FJF). The authors evaluated the axial stiffness and flexion-extension ROM predicted by the model using previously published experimental measurements obtained from pediatric cadaveric tissues. RESULTS: In the axial tension simulation, the model with 50% adult ligamentous and annulus material properties predicted an axial stiffness of 49 N/mm, which corresponded with previously published data from similarly aged cadavers (46.1 ± 9.6 N/mm). In the flexion-extension simulation, the same 50% model predicted an ROM that was within the range of the similarly aged cohort of cadavers. The subaxial FJFs predicted by the model in extension, lateral bending, and axial rotation were in the range of 1-4 N and, as expected, tended to increase as the ligament and disc material properties decreased. CONCLUSIONS: A pediatric cervical spine FEM was created that accurately predicts axial tension and flexion-extension ROM when ligamentous and annulus material properties are reduced to 50% of published adult properties. This model shows promise for use in surgical simulation procedures and as a normal comparison for disease-specific FEMs.

2.
Spine J ; 21(1): 150-159, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32768656

RESUMEN

BACKGROUND CONTEXT: Previous studies have analyzed the effect of laminectomy on intervertebral disc (IVD), facet-joint-forces (FJF), and range of motion (ROM), while only two have specifically reported stresses at the pars interarticularis (PI) with posterior element resection. These studies have been performed utilizing a single subject, questioning their applications to a broader population. PURPOSE: We investigate the effect of graded PI resection in a three-dimensional manner on PI stress to provide surgical guidelines for avoidance of iatrogenic instability following lumbar laminectomy. Additionally, quantified FJF and IVD stresses can provide further insight into the development of adjacent segment disease. STUDY DESIGN: Biomechanical finite element (FE) method investigation of the lumbar spine. METHODS: FE models of the lumbar spine of three subjects were created using the open-source finite element software, FEBio. Single-level laminectomy, two-level laminectomy, and ventral-to-dorsal PI resection simulations were performed with varying degrees of PI resection from 0% to 75% of the native PI. These models were taken through cardinal ROM under standard loading conditions and PI stresses, FJF, IVD stresses, and ROM were analyzed. RESULTS: The three types of laminectomy simulated in this study showed a nonlinear increase in PI stress with increased bone resection. Axial rotation generated the most stress at the PI followed by flexion, extension and lateral bending. At 75% bone resection all three types of laminectomy produced PI stresses that were near the ultimate strength of human cortical bone during axial rotation. FJF decreased with increased bone resection for the three laminectomies simulated. This was most notable in axial rotation followed by extension and lateral bending. IVD stresses varied greatly between the nonsurgical models and likewise the effect of laminectomy on IVD stresses varied between subjects. ROM was mostly unaffected by the laminectomies performed in this study. CONCLUSIONS: Regarding the risk of iatrogenic spondylolisthesis, the combined results are sufficient evidence to suggest surgeons should be particularly cautious when PI resection exceeds 50% bone resection for all laminectomies included in this study. Lastly, the effects seen in FJF and IVD stresses indicate the degree to which the remainder of the spine must experience compensatory biomechanical changes as a result of the surgical intervention.


Asunto(s)
Laminectomía , Vértebras Lumbares , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Humanos , Laminectomía/efectos adversos , Vértebras Lumbares/cirugía , Rango del Movimiento Articular
3.
Comput Methods Biomech Biomed Engin ; 21(6): 444-452, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-30010415

RESUMEN

Finite element analysis has proven to be a viable method for assessing many structure-function relationships in the human lumbar spine. Several validated models of the spine have been published, but they typically rely on commercial packages and are difficult to share between labs. The goal of this study is to present the development of the first open-access models of the human lumbar spine in FEBio. This modeling framework currently targets three deficient areas in the field of lumbar spine modeling: 1) open-access models, 2) accessibility for multiple meshing schemes, and 3) options to include advanced hyperelastic and biphasic constitutive models.


Asunto(s)
Análisis de Elementos Finitos , Vértebras Lumbares/fisiología , Modelos Biológicos , Fenómenos Biomecánicos , Fuerza Compresiva , Femenino , Humanos , Persona de Mediana Edad , Rango del Movimiento Articular , Factores de Tiempo , Articulación Cigapofisaria/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA