Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
mSphere ; 9(7): e0023324, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38940510

RESUMEN

The gut microbiome has the potential to buffer temporal variations in resource availability and consumption, which may play a key role in the ability of animals to adapt to a broad range of habitats. We investigated the temporal composition and function of the gut microbiomes of wild common marmosets (Callithrix jacchus) exploiting a hot, dry environment-Caatinga-in northeastern Brazil. We collected fecal samples during two time periods (July-August and February-March) for 2 years from marmosets belonging to eight social groups. We used 16S rRNA gene amplicon sequencing, metagenomic sequencing, and butyrate RT-qPCR to assess changes in the composition and potential function of their gut microbiomes. Additionally, we identified the plant, invertebrate, and vertebrate components of the marmosets' diet via DNA metabarcoding. Invertebrate, but not plant or vertebrate, consumption varied across the year. However, gut microbiome composition and potential function did not markedly vary across study periods or as a function of diet composition. Instead, the gut microbiome differed markedly in both composition and potential function across marmosets residing in different social groups. We highlight the likely role of factors, such as behavior, residence, and environmental heterogeneity, in modulating the structure of the gut microbiome. IMPORTANCE: In a highly socially cohesive and cooperative primate, group membership more strongly predicts gut microbiome composition and function than diet.


Asunto(s)
Callithrix , Dieta , Heces , Microbioma Gastrointestinal , ARN Ribosómico 16S , Animales , Microbioma Gastrointestinal/genética , Callithrix/microbiología , ARN Ribosómico 16S/genética , Heces/microbiología , Brasil , Metagenómica , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Masculino , Femenino , Animales Salvajes/microbiología
2.
Microbiol Res ; 286: 127794, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38852301

RESUMEN

Probiotics have the potential to prevent disruptions to normal gastrointestinal function caused by oral antibiotic use. In this study, we examined the capacity of Bifidobacterium animalis subspecies lactis BB-12 (BB-12) and yogurt, separately and combined, to mitigate the effects of the antibiotic amoxicillin-clavulanate (AMC) on the gut microbiota and metabolomes of C57BL/6 J mice. Male and female mice were administered either BB-12, yogurt, BB-12 in yogurt, or saline for 10 days concurrent with the inclusion of AMC in the drinking water. Male mice exposed to AMC exhibited significant reductions (p<0.05) in body weight over the course of the study compared to sham (no AMC) controls whereas no such effects were observed for female mice. AMC administration resulted in rapid alterations to the intestinal microbiota in both sexes irrespective of BB-12 or yogurt treatment, including significant (p<0.05) losses in bacterial cell numbers and changes in microbial alpha-diversity and beta-diversity in the feces and cecal contents. The effects of AMC on the gut microbiota were observed within one day of administration and the bacterial contents continued to change over time, showing a succession marked by rapid reductions in Muribaculaceae and Lachnospiraceae and temporal increases in proportions of Acholeplasmataceae (day 1) and Streptococcaceae and Leuconostocaceae (day 5). By day 10 of AMC intake, high proportions of Gammaproteobacteria assigned as Erwiniaceae or Enterobacteriaceae (average of 63 %), were contained in the stools and were similarly enriched in the cecum. The cecal contents of mice given AMC harbored significantly reduced concentrations of (branched) short-chain fatty acids (SCFA), aspartate, and other compounds, whereas numerous metabolites, including formate, lactate, and several amino acids and amino acid derivatives were significantly enriched. Despite the extensive impact of AMC, starting at day 7 of the study, the body weights of male mice given yogurt or BB-12 (in saline) with AMC were similar to the healthy controls. BB-12 (in saline) and yogurt intake was associated with increased Streptococcaceae and both yogurt and BB-12 resulted in lower proportions of Erwiniaceae in the fecal and cecal contents. The cecal contents of mice fed BB-12 in yogurt contained levels of formate, glycine, and glutamine that were equivalent to the sham controls. These findings highlight the potential of BB-12 and yogurt to mitigate antibiotic-induced gut dysbiosis.


Asunto(s)
Antibacterianos , Bifidobacterium animalis , Heces , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Probióticos , Yogur , Animales , Yogur/microbiología , Femenino , Masculino , Microbioma Gastrointestinal/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Probióticos/administración & dosificación , Administración Oral , Ratones , Heces/microbiología , Combinación Amoxicilina-Clavulanato de Potasio/administración & dosificación , Combinación Amoxicilina-Clavulanato de Potasio/farmacología , Ciego/microbiología , Peso Corporal/efectos de los fármacos , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Metaboloma/efectos de los fármacos
3.
Nature ; 611(7935): 352-357, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36289331

RESUMEN

The vertebrate adaptive immune system modifies the genome of individual B cells to encode antibodies that bind particular antigens1. In most mammals, antibodies are composed of heavy and light chains that are generated sequentially by recombination of V, D (for heavy chains), J and C gene segments. Each chain contains three complementarity-determining regions (CDR1-CDR3), which contribute to antigen specificity. Certain heavy and light chains are preferred for particular antigens2-22. Here we consider pairs of B cells that share the same heavy chain V gene and CDRH3 amino acid sequence and were isolated from different donors, also known as public clonotypes23,24. We show that for naive antibodies (those not yet adapted to antigens), the probability that they use the same light chain V gene is around 10%, whereas for memory (functional) antibodies, it is around 80%, even if only one cell per clonotype is used. This property of functional antibodies is a phenomenon that we call light chain coherence. We also observe this phenomenon when similar heavy chains recur within a donor. Thus, although naive antibodies seem to recur by chance, the recurrence of functional antibodies reveals surprising constraint and determinism in the processes of V(D)J recombination and immune selection. For most functional antibodies, the heavy chain determines the light chain.


Asunto(s)
Anticuerpos , Selección Clonal Mediada por Antígenos , Cadenas Pesadas de Inmunoglobulina , Cadenas Ligeras de Inmunoglobulina , Animales , Secuencia de Aminoácidos , Anticuerpos/química , Anticuerpos/genética , Anticuerpos/inmunología , Antígenos/química , Antígenos/inmunología , Linfocitos B/citología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Regiones Determinantes de Complementariedad/química , Regiones Determinantes de Complementariedad/inmunología , Cadenas Pesadas de Inmunoglobulina/química , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , Mamíferos , Cadenas Ligeras de Inmunoglobulina/química , Cadenas Ligeras de Inmunoglobulina/genética , Cadenas Ligeras de Inmunoglobulina/inmunología , Memoria Inmunológica , Recombinación V(D)J , Selección Clonal Mediada por Antígenos/genética , Selección Clonal Mediada por Antígenos/inmunología
4.
Elife ; 112022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35147079

RESUMEN

Energy conservation in microorganisms is classically categorized into respiration and fermentation; however, recent work shows some species can use mixed or alternative bioenergetic strategies. We explored the use of extracellular electron transfer for energy conservation in diverse lactic acid bacteria (LAB), microorganisms that mainly rely on fermentative metabolism and are important in food fermentations. The LAB Lactiplantibacillus plantarum uses extracellular electron transfer to increase its NAD+/NADH ratio, generate more ATP through substrate-level phosphorylation, and accumulate biomass more rapidly. This novel, hybrid metabolism is dependent on a type-II NADH dehydrogenase (Ndh2) and conditionally requires a flavin-binding extracellular lipoprotein (PplA) under laboratory conditions. It confers increased fermentation product yield, metabolic flux, and environmental acidification in laboratory media and during kale juice fermentation. The discovery of a single pathway that simultaneously blends features of fermentation and respiration in a primarily fermentative microorganism expands our knowledge of energy conservation and provides immediate biotechnology applications.


Bacteria produce the energy they need to live through two processes, respiration and fermentation. While respiration is often more energetically efficient, many bacteria rely on fermentation as their sole means of energy production. Respiration normally depends on the presence of small soluble molecules, such as oxygen, that can diffuse inside the cell, but some bacteria can use metals or other insoluble compounds found outside the cell to perform 'extracellular electron transfer'. Lactic acid bacteria are a large group of bacteria that have several industrial uses and live in many natural environments. These bacteria survive using fermentation, but they also carry a group of genes needed for extracellular electron transfer. It is unclear whether they use these genes for respiration or if they have a different purpose. Tejedor-Sanz, Stevens et al. used a lactic acid bacterium called Lactiplantibacillus plantarum to study whether and how this group of bacteria use extracellular electron transfer. Analysis of L. plantarum and its effect on its surroundings showed that these bacteria use a hybrid process to produce energy: the cells use aspects of extracellular respiration to increase the yield and efficiency of fermentation. Combining these two approaches may allow L. plantarum to adapt to different environments and grow faster, allowing it to compete against other species. Tejedor-Sanz, Stevens et al. provide new information on a widespread group of bacteria that are often used in food production and industry. The next step will be to understand how the hybrid system is controlled and how it varies among species. Understanding this process could result in new biotechnologies and foods that are healthier, produce less waste, or have different tastes and textures.


Asunto(s)
Transporte de Electrón/fisiología , Fermentación , Lactobacillaceae/metabolismo , Albinismo Oculocutáneo , Biomasa , Brassica/química , Jugos de Frutas y Vegetales , Lactobacillaceae/enzimología , Lactobacillaceae/genética , Lactobacillales/metabolismo , Lipoproteínas , NADH Deshidrogenasa/metabolismo , Fosforilación
5.
Nutrients ; 13(7)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202877

RESUMEN

Glucosamine (GLU) is a natural compound found in cartilage, and supplementation with glucosamine has been shown to improve joint heath and has been linked to reduced mortality rates. GLU is poorly absorbed and may exhibit functional properties in the gut. The purpose of this study was to examine the impact of glucosamine on gastrointestinal function as well as changes in fecal microbiota and metabolome. Healthy males (n = 6) and females (n = 5) (33.4 ± 7.7 years, 174.1 ± 12.0 cm, 76.5 ± 12.9 kg, 25.2 ± 3.1 kg/m2, n = 11) completed two supplementation protocols that each spanned three weeks separated by a washout period that lasted two weeks. In a randomized, double-blind, placebo-controlled, crossover fashion, participants ingested a daily dose of GLU hydrochloride (3000 mg GlucosaGreen®, TSI Group Ltd., Missoula, MT, USA) or maltodextrin placebo. Study participants completed bowel habit and gastrointestinal symptoms questionnaires in addition to providing a stool sample that was analyzed for fecal microbiota and metabolome at baseline and after the completion of each supplementation period. GLU significantly reduced stomach bloating and showed a trend towards reducing constipation and hard stools. Phylogenetic diversity (Faith's PD) and proportions of Pseudomonadaceae, Peptococcaceae, and Bacillaceae were significantly reduced following GLU consumption. GLU supplementation significantly reduced individual, total branched-chain, and total amino acid excretion, with no glucosamine being detected in any of the fecal samples. GLU had no effect on fecal short-chain fatty acids levels. GLU supplementation provided functional gut health benefits and induced fecal microbiota and metabolome changes.


Asunto(s)
Suplementos Dietéticos , Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Glucosamina/administración & dosificación , Adulto , Estudios Cruzados , Defecación/efectos de los fármacos , Método Doble Ciego , Heces/química , Heces/microbiología , Femenino , Voluntarios Sanos , Humanos , Masculino , Filogenia , Proyectos Piloto , Polisacáridos/administración & dosificación
6.
Nutrients ; 13(2)2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671147

RESUMEN

The majority of research on the physiological effects of dietary resistant starch type 2 (RS2) has focused on sources derived from high-amylose maize. In this study, we conduct a double-blind, randomized, placebo-controlled, crossover trial investigating the effects of RS2 from wheat on glycemic response, an important indicator of metabolic health, and the gut microbiota. Overall, consumption of RS2-enriched wheat rolls for one week resulted in reduced postprandial glucose and insulin responses relative to conventional wheat when participants were provided with a standard breakfast meal containing the respective treatment rolls (RS2-enriched or conventional wheat). This was accompanied by an increase in the proportions of bacterial taxa Ruminococcus and Gemmiger in the fecal contents, reflecting the composition in the distal intestine. Additionally, fasting breath hydrogen and methane were increased during RS2-enriched wheat consumption. However, although changes in fecal short-chain fatty acid (SCFA) concentrations were not significant between control and RS-enriched wheat roll consumption, butyrate and total SCFAs were positively correlated with relative abundance of Faecalibacterium, Ruminoccocus, Roseburia, and Barnesiellaceae. These effects show that RS2-enriched wheat consumption results in a reduction in postprandial glycemia, altered gut microbial composition, and increased fermentation activity relative to wild-type wheat.


Asunto(s)
Glucemia/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Almidón Resistente/clasificación , Triticum/química , Adulto , Bacterias/clasificación , Bacterias/genética , Estudios Cruzados , Método Doble Ciego , Ácidos Grasos Volátiles/química , Heces/química , Heces/microbiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Almidón Resistente/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA