Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Infect Dis ; 224(4): 575-585, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34398243

RESUMEN

Severe coronavirus disease 2019 (COVID-19) is associated with an overactive inflammatory response mediated by macrophages. Here, we analyzed the phenotype and function of neutrophils in patients with COVID-19. We found that neutrophils from patients with severe COVID-19 express high levels of CD11b and CD66b, spontaneously produce CXCL8 and CCL2, and show a strong association with platelets. Production of CXCL8 correlated with plasma concentrations of lactate dehydrogenase and D-dimer. Whole blood assays revealed that neutrophils from patients with severe COVID-19 show a clear association with immunoglobulin G (IgG) immune complexes. Moreover, we found that sera from patients with severe disease contain high levels of immune complexes and activate neutrophils through a mechanism partially dependent on FcγRII (CD32). Interestingly, when integrated in immune complexes, anti-severe acute respiratory syndrome coronavirus 2 IgG antibodies from patients with severe COVID-19 displayed a higher proinflammatory profile compared with antibodies from patients with mild disease. Our study suggests that IgG immune complexes might promote the acquisition of an inflammatory signature by neutrophils, worsening the course of COVID-19.


Asunto(s)
Anticuerpos Antivirales/inmunología , Complejo Antígeno-Anticuerpo/inmunología , COVID-19/inmunología , Inmunoglobulina G/inmunología , Activación Neutrófila/inmunología , Adulto , Anciano , Anticuerpos Antivirales/sangre , Complejo Antígeno-Anticuerpo/sangre , Antígenos CD/inmunología , Antígeno CD11b/inmunología , Moléculas de Adhesión Celular/inmunología , Femenino , Proteínas Ligadas a GPI/inmunología , Humanos , Inmunoglobulina G/sangre , Interleucina-8/inmunología , Masculino , Persona de Mediana Edad , Neutrófilos/inmunología , Receptores de IgG/inmunología , SARS-CoV-2/inmunología , Adulto Joven
2.
Oncotarget ; 10(41): 4169-4179, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31289615

RESUMEN

SPARC, also known as osteonectin and BM-40, is a matricellular protein with a number of biological functions. Hepatic SPARC expression is induced in response to thioacetamide, bile-duct ligation, and acute injuries such as concanavalin A and lipopolysacharide (LPS)/D-galactosamine. We have previously demonstrated that the therapeutic inhibition of SPARC or SPARC gene deletion protected mice against liver injury. We investigated the mechanisms involved in the protective effect of SPARC inhibition in mice. We performed a proteome analysis of livers from SPARC+/+ and SPARC-/- mice chronically treated with thioacetamide. Catalase activity, carbonylation levels, oxidative stress response, and mitochondrial function were studied. Genomic analysis revealed that SPARC-/- mice had an increased expression of cell proliferation genes. Proteins involved in detoxification of reactive oxygen species such as catalase, peroxirredoxine-1, and glutathione-S-transferase P1 and Mu1 were highly expressed as evidenced by proteome analysis; hepatic catalase activity was increased in SPARC-/- mice. Oxidative stress response and carbonylation levels were lower in livers from SPARC-/- mice. Hepatic mitochondria showed lower levels of nitrogen reactive species in the SPARC-/- concanavalin A-treated mice. Mitochondrial morphology was preserved, and its complex activity reduced in SPARC-/- mice. In conclusion, our data suggest that the protection associated with SPARC gene deletion may be partially due to a higher proliferative capacity of hepatocytes and an enhanced oxidative stress defense in SPARC-/- mice after liver injury.

3.
Methods Enzymol ; 396: 399-414, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16291249

RESUMEN

For many years, mitochondrial respiration was thought to follow an "all or nothing" paradigm supporting the notion that in the normal O2 concentration range, respiration is mainly controlled by tissue demands. However, nitric oxide produced by cytosol or mitochondrial nitric oxide synthases adapts respiration to different physiologic conditions and increases the mitochondrial production of O2 active species that contributes to NO clearance. Because mitochondrial NO utilization is sensitive to environmental or hormonal modulation, and because diffusible active species, like H2O2, are able to regulate genes related to proliferation, quiescence, and death, we surmised that the two mechanisms converge to elicit the different responses in cell physiology.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Óxido Nítrico/metabolismo , Animales , Catalasa/metabolismo , Proliferación Celular , Electroforesis en Gel de Poliacrilamida , Glutatión Peroxidasa/metabolismo , Mitocondrias/enzimología , Óxido Nítrico Sintasa/metabolismo , Ácido Peroxinitroso/metabolismo , Superóxidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...