Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 7(1): 3152, 2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28600487

RESUMEN

From flocking birds to swarming insects, interactions of organisms large and small lead to the emergence of collective dynamics. Here, we report striking collective swimming of bovine sperm in dynamic clusters, enabled by the viscoelasticity of the fluid. Sperm oriented in the same direction within each cluster, and cluster size and cell-cell alignment strength increased with viscoelasticity of the fluid. In contrast, sperm swam randomly and individually in Newtonian (nonelastic) fluids of low and high viscosity. Analysis of the fluid motion surrounding individual swimming sperm indicated that sperm-fluid interaction was facilitated by the elastic component of the fluid. In humans, as well as cattle, sperm are naturally deposited at the entrance to the cervix and must swim through viscoelastic cervical mucus and other mucoid secretions to reach the site of fertilization. Collective swimming induced by elasticity may thus facilitate sperm migration and contribute to successful fertilization. We note that almost all biological fluids (e.g. mucus and blood) are viscoelastic in nature, and this finding highlights the importance of fluid elasticity in biological function.


Asunto(s)
Comunicación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Resinas Acrílicas/química , Resinas Acrílicas/farmacología , Animales , Fenómenos Biomecánicos , Tampones (Química) , Bovinos , Comunicación Celular/fisiología , Movimiento Celular/fisiología , Elasticidad , Masculino , Povidona/química , Povidona/farmacología , Soluciones , Espermatozoides/citología , Espermatozoides/fisiología , Viscosidad
2.
Proc Natl Acad Sci U S A ; 112(17): 5431-6, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25870286

RESUMEN

Successful mammalian reproduction requires that sperm migrate through a long and convoluted female reproductive tract before reaching oocytes. For many years, fertility studies have focused on biochemical and physiological requirements of sperm. Here we show that the biophysical environment of the female reproductive tract critically guides sperm migration, while at the same time preventing the invasion of sexually transmitted pathogens. Using a microfluidic model, we demonstrate that a gentle fluid flow and microgrooves, typically found in the female reproductive tract, synergistically facilitate bull sperm migration toward the site of fertilization. In contrast, a flagellated sexually transmitted bovine pathogen, Tritrichomonas foetus, is swept downstream under the same conditions. We attribute the differential ability of sperm and T. foetus to swim against flow to the distinct motility types of sperm and T. foetus; specifically, sperm swim using a posterior flagellum and are near-surface swimmers, whereas T. foetus swims primarily via three anterior flagella and demonstrates much lower attraction to surfaces. This work highlights the importance of biophysical cues within the female reproductive tract in the reproductive process and provides insight into coevolution of males and females to promote fertilization while suppressing infection. Furthermore, the results provide previously unidentified directions for the development of in vitro fertilization devices and contraceptives.


Asunto(s)
Cuello del Útero , Trompas Uterinas , Fertilidad/fisiología , Motilidad Espermática , Espermatozoides , Tritrichomonas foetus/metabolismo , Aborto Veterinario/metabolismo , Aborto Veterinario/patología , Animales , Bovinos , Enfermedades de los Bovinos/metabolismo , Enfermedades de los Bovinos/patología , Cuello del Útero/anatomía & histología , Cuello del Útero/fisiología , Trompas Uterinas/anatomía & histología , Trompas Uterinas/fisiología , Femenino , Masculino , Infecciones por Protozoos/metabolismo , Infecciones por Protozoos/patología
3.
Lab Chip ; 14(7): 1348-56, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24535032

RESUMEN

Successful reproduction in mammals requires sperm to swim against a fluid flow and through the long and complex female reproductive tract before reaching the egg in the oviduct. Millions of them do not make it. Despite their clinical importance, the roles played in sperm migration by the diverse biophysical and biochemical microenvironments within the reproductive tract are largely unknown. In this article, we present the development of a double layer microfluidic device that recreates two important biophysical environments within the female reproductive tract: fluid flow and surface topography. The unique feature of the device is that it enables one to study the cooperative roles of fluid flow and surface topography in guiding sperm migration. Using bull sperm as a model system, we found that microfluidic grooves embedded on a channel surface facilitate sperm migration against fluid flow. These findings suggest ways to design in vitro fertilization devices to treat infertility and to develop non-invasive contraceptives that use a microarchitectural design to entrap sperm.


Asunto(s)
Movimiento Celular , Fertilización In Vitro/métodos , Técnicas Analíticas Microfluídicas/métodos , Oviductos , Motilidad Espermática , Espermatozoides/metabolismo , Animales , Femenino , Fertilización In Vitro/instrumentación , Masculino , Ratones , Técnicas Analíticas Microfluídicas/instrumentación , Espermatozoides/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA