Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
MethodsX ; 12: 102547, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38292309

RESUMEN

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard Terra and Aqua satellites provides measurements of several atmospheric parameters. This paper focuses on the cloud fraction data representing the number of cloudy pixels divided by the total number of pixels, and available through 1° x 1° grids spatial resolution with daily or monthly temporal resolution. The aim of the study is to propose a novel method called The Spatial-Temporal Implementation Algorithm (STIA) for analysing satellite daily 1° x 1°grid cloud fraction average values for•Comparing two datasets retrieved by MODIS aboard Aqua and Terra satellites to obtain information on the cloud formation in the afternoon and morning, respectively, thus enhancing the temporal resolution.•Comparing the actual parameter with others retrieved by instruments aboard of different satellites characterized by a better resolution. As an example of STIA application, this study uses the Aerosol Optical Depth (AOD) collected by the Ozone Monitoring Instrument (OMI) on board of Aura satellite for comparison with MODIS instrument to achieve and enhanced spatial resolution of the grid-cell.

2.
Polymers (Basel) ; 15(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36987236

RESUMEN

Two nanomicas of similar composition, containing muscovite and quartz, but with different particle size distributions, have been used to prepare transparent epoxy nanocomposites. Their homogeneous dispersion, due to the nano-size, was achieved even without being organically modified, and no aggregation of the nanoparticles was observed, thus maximizing the specific interface between matrix and nanofiller. No exfoliation or intercalation has been observed by XRD, despite the significant dispersion of the filler in the matrix which produced nanocomposites with a loss in transparency in the visible domain of less than 10% in the presence of 1% wt and 3% wt of mica fillers. The presence of micas does not affect the thermal behavior of the nanocomposites, which remains similar to that of the neat epoxy resin. The mechanical characterization of the epoxy resin composites revealed an increased Young's modulus, whereas tensile strength was reduced. A peridynamics-based representative volume element approach has been implemented to estimate the effective Young's modulus of the nanomodified materials. The results obtained through this homogenization procedure have been used as input for the analysis of the nanocomposite fracture toughness, which has been carried out by a classical continuum mechanics-peridynamics coupling approach. Comparison with the experimental data confirms the capability of the peridynamics-based strategies to properly model the effective Young's modulus and fracture toughness of epoxy-resin nanocomposites. Finally, the new mica-based composites exhibit high values of volume resistivity, thus being excellent candidates as insulating materials.

3.
Sensors (Basel) ; 21(22)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34833618

RESUMEN

Sky Quality Meter (SQM) is a commercial instrument based on photometers widely used by amateur astronomers for skyglow measurement from the ground. In the framework of the MINLU project, two SQM-LE units were integrated in an autonomous sensor suite realized and tested at University of Padova for monitoring light pollution from drones or sounding balloons. During the ground tests campaign before airborne measurement, the performance of both SQM units was verified in laboratory using controlled light sources as a reference input; the results showed that both units presented an angular response deviating consistently from the expected performance and that the sensors' field of view was larger than the one declared in the manufacturer's datasheet. This aspect in particular would affect direct skyglow measurements during flight as light sources close to the boundaries of the field of view would not be attenuated but instead detected by the sensors. As a direct consequence, the measurement of low-intensity skyglows at stratospheric altitudes could be affected by high-intensity punctual sources acting as lateral disturbances. A dedicated test campaign was therefore conceived and realized to investigate SQM unit response to light sources in the field of view and identify the true angular response curve; the setup consisted in a controlled rotatory stage moving the unit in front of a fixed diffusive light source. Different test conditions were used to validate the experimental procedure, demonstrating the repeatability of the measurements. This paper presents the experimental campaign and the resulting SQM angular response curve; results indicate for both SQMs a larger than expected field of view and the presence of a double peak in the angular response, which is likely related to a non-perfect alignment of SQMs collimation optics. Furthermore, the wider resulting curves suggest that the contribution of lateral sources is more prominent with respect to the response predicted by the manufacturer. For this reason, the utilization of baffles to restrict SQMs field of view is analyzed to minimize the disturbance of lateral light sources and two different geometries are presented.

4.
Sensors (Basel) ; 19(23)2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31766418

RESUMEN

The paper presents the calibration activity on the imaging system of the MINLU instrument, an autonomous sensor suite designed for monitoring light pollution using commercial off-the-shelf components. The system is extremely compact and with an overall mass below 3 kg can be easily installed as a payload for drones or sounding balloons. Drones and air balloons can in fact play an important role in completing upward light emission measurement from satellites allowing an increased spatial and time resolution from convenient altitudes and positions. The proposed system can efficiently measure the luminous intensity and the spectral power density of on-ground emissions providing a useful tool to identify polluting sources and to quantify upward light flux. The metrological performance of the imaging system has been verified through an extensive laboratory test activity using referenced light sources: the overall uncertainty of the multi-luminance meter has been calculated to be 7% of the reading, while the multi-spectrometer has shown a full width at half maximum (FWHM) equal to 10 nm within the measuring range between 400 nm and 700 nm. When operating at an altitude of 200 m, the system can achieve a horizontal resolution at a ground level of 0.12 m with a wavelength resolution able to identify the different lamp technology of outdoor light sources, including light-emitting diode (LED) lights that are undetected by satellites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...