Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396534

RESUMEN

Caseous lymphadenitis is a chronic debilitating disease typical of small ruminants, but it is also noted in several other domestic and wild species. In this report, we present the first documented case in Italy of pseudotuberculosis in a roe deer (Capreolus capreolus, Linnaeus 1758) found dead in the mountains of Forlì-Cesena province, Emilia Romagna region. The carcass underwent necropsy according to standard protocols, revealing generalized lymphadenopathy and severe apostematous pneumonia with multifocal and encapsulated abscesses. Corynebacterium pseudotuberculosis was isolated from the lung parenchyma, lymph nodes and abscesses. Additionally, severe parasitic bronchopneumonia of the caudal lobes and gastrointestinal strongyle infestation were detected. To our knowledge, this is the first documented case of CLA referable to C. pseudotubercolosis in a roe deer in Italy.

2.
Sci Total Environ ; 915: 169990, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38232835

RESUMEN

Second-generation Anticoagulant Rodenticides (ARs) can be critical for carnivores, due to their widespread use and impacts. However, although many studies explored the impacts of ARs on small and mesocarnivores, none assessed the extent to which they could contaminate large carnivores in anthropized landscapes. We filled this gap by exploring spatiotemporal trends in grey wolf (Canis lupus) exposure to ARs in central and northern Italy, by subjecting a large sample of dead wolves (n = 186) to the LC-MS/MS method. Most wolves (n = 115/186, 61.8 %) tested positive for ARs (1 compound, n = 36; 2 compounds, n = 47; 3 compounds, n = 16; 4 or more compounds, n = 16). Bromadiolone, brodifacoum and difenacoum, were the most common compounds, with brodifacoum and bromadiolone being the ARs that co-occurred the most (n = 61). Both the probability of testing positive for multiple ARs and the concentration of brodifacoum, and bromadiolone in the liver, systematically increased in wolves that were found at more anthropized sites. Moreover, wolves became more likely to test positive for ARs through time, particularly after 2020. Our results underline that rodent control, based on ARs, increases the risks of unintentional poisoning of non-target wildlife. However, this risk does not only involve small and mesocarnivores, but also large carnivores at the top of the food chain, such as wolves. Therefore, rodent control is adding one further conservation threat to endangered large carnivores in anthropized landscapes of Europe, whose severity could increase over time and be far higher than previously thought. Large-scale monitoring schemes for ARs in European large carnivores should be devised as soon as possible.


Asunto(s)
Rodenticidas , Lobos , Animales , Anticoagulantes , Cromatografía Liquida , Espectrometría de Masas en Tándem
3.
J Food Prot ; 86(5): 100080, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36990353

RESUMEN

This study analyzed data from 6 years (2014-2019) of official controls in the Emilia-Romagna region (northern Italy) to investigate the frequencies of human pathogens and chemical hazards in foods during production and distribution. Campylobacter spp. was the most prevalent pathogen, isolated in 4.4% of the 1,078 food samples examined, followed by Salmonella spp. (2.8%), Shiga toxin-producing Escherichia coli (STEC) (1.9%), and Listeria monocytogenes (0.9%). Salmonella serotyping showed that the isolates belonged to the serotypes most commonly isolated from humans in Emilia-Romagna. These serotypes were as follows: S. Infantis (34.8%), mostly isolated from chicken, monophasic S. Typhimurium (1,4, [5],12:i:-) (12.6%), S. Bredeney (8.9%), and S. Derby (8.6%). No Clostridium botulinum, Yersinia spp., and Shigella spp. were isolated. No positivity was detected for hepatitis A virus, while 5.1% of samples taken in the production phase of the food chain were found to be contaminated with norovirus. The chemical analyses identified environmental contaminants within legal limits (heavy metals, 0.6% positive overall; mycotoxins, 0.4% positive overall), analytes subjected to monitoring (perfluoro-alkyl substances (PFASs), 6.2% positive overall; inorganic arsenic, no positives overall) and process contaminants and additives within legal limits (acrylamide, 9.6% positive overall; permitted or nonpermitted additives, 0.9% positive overall). Only one sample showed dioxins and polychlorinated biphenyls (PCBs) at levels higher than the legal limits. The monitoring by competent authorities (CA) of food contamination can generate useful data that can be used as a basis for estimating the exposure to different food contaminants over time and for evaluating the effects of control measures on the contamination of food.


Asunto(s)
Listeria monocytogenes , Escherichia coli Shiga-Toxigénica , Humanos , Microbiología de Alimentos , Contaminación de Alimentos/análisis , Salmonella
4.
Pathogens ; 12(1)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36678460

RESUMEN

Prudent antibiotic use in pigs is critical to ensuring animal health and preventing the development of critical resistance. We evaluated the antimicrobial resistance (AMR) pattern in commensal and enterotoxigenic Escherichia coli (ETEC) isolates obtained in 2017−2021 from pigs suffering from enteric disorders. Overall, the selected 826 E. coli isolates showed the highest level of resistance to ampicillin (95.9%), tetracycline (89.7%), cefazolin (79.3%), and trimethoprim/sulfamethoxazole (74.8%). The resistance rates of the isolates to ampicillin increased (p < 0.05), reaching 99.2% of resistant strains in 2021. Regarding isolates harboring virulence genes, ETEC F18+ were significantly more resistant to florfenicol, gentamicin, kanamycin, and trimethoprim/sulfamethoxazole than ETEC F4+ strains. E. coli lacking virulence factor genes were more resistant to amoxicillin with clavulanic acid and cefazolin, but less resistant to gentamicin (p < 0.01) than isolates harboring virulence factors. Throughout the study period, a significant number of ETEC F18+ isolates developed resistance to florfenicol, gentamicin, and kanamycin. Finally, ETEC 18+ significantly (p < 0.05) increased resistance to all the tested antibiotics. In conclusion, AMR varied for E. coli over time and showed high levels for molecules widely administered in the swine industry, emphasizing the need for continuous surveillance. The observed differences in AMR between commensal and ETEC isolates may lead to the hypothesis that plasmids carrying virulence genes are also responsible for AMR in E. coli, suggesting more research on genetic variation between pathogenic and nonpathogenic E. coli.

5.
Pathogens ; 11(12)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36558891

RESUMEN

Canine distemper virus (CDV) is a fatal, highly contagious disease found in wild and domestic carnivores. Several outbreaks have occurred in wildlife in Italy in recent years. This study aims to detect CDV in wildlife following the increasing mortality of foxes (Vulpes vulpes) in the Emilia-Romagna region (northern Italy) observed in 2021. Sixty-seven foxes and one badger (Meles meles) were subjected to necropsy followed by histological examination and were analyzed with molecular techniques to detect the presence of CDV. Of the tested animals, 16% (nine foxes and one badger) were positive for CDV. Phylogenetic analysis showed two different lineages based on complete H gene sequences. The Europe/South America-1 lineage was detected in one fox from Modena, which resembled the CDV variant associated with a previous outbreak in northern Italy in 2018, while the European Wildlife lineage was detected in animals from the Rimini province. Amino acid analysis highlighted a Y549H mutation in all sequences collected, which is commonly associated with increased virulence.

6.
Animals (Basel) ; 12(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36496889

RESUMEN

Salmonella is a pathogen of considerable health concern, given its zoonotic potential, and, in Italy, is the most frequently reported causative agent for foodborne outbreaks. Wild animals and in particular wild carnivores may be carriers of different Salmonella enterica subspecies and serotypes. Given their potential role as reservoirs, surveillance activities are necessary. This study aims to investigate the presence of different Salmonella subspecies and serotypes in wild carnivores in the Emilia-Romagna Region. A total of 718 fox (Vulpes vulpes), 182 badger (Meles meles) and 27 wolf (Canis lupus) carcasses, submitted between 2016-2022, were included for the present work. Gender and age data were collected along with geographical coordinates of carcass' discovery site. Contents of the large intestine were sampled and cultured according to ISO 6579-1 and both serogroup and serotype identification were performed according to ISO/TR 6579-3:2014. Salmonella was retrieved from 42 foxes (6%), 21 badgers (12%) and 3 wolves (12%), respectively. Isolated Salmonella enterica strains belonged to 4 different subspecies and 25 different serotypes. S. veneziana and S. typhimurium were the most frequent serotypes found (11/67 and 10/67, respectively). In conclusion, zoonotic serotypes were found in all these species of wildlife, thus confirming their potential role in the ecology of Salmonella spp.

7.
Pathogens ; 11(11)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36365059

RESUMEN

In the last decade, an upsurge of human leishmaniasis has been reported in the Emilia-Romagna region, Northeast Italy. Epidemiologic data have raised doubts about the role of dogs as the main reservoirs for Leishmania infantum. In the present study, a total of 1,077 wild animals were screened for L. infantum DNA in earlobe and spleen samples from 2019 to 2022. The lymph nodes were tested only in 23 animals already positive in the earlobe and/or spleen. A total of 71 (6.6%) animals resulted positive in at least one of the sampled tissues, including 3/18 (16.7%) wolves, 6/39 (15.4%) European hares, 38/309 (12.3%) roe deer, 1/11 (9.1%) red deer, 8/146 (4.9%) wild boars, 13/319 (4.1%) red foxes, 1/54 (1.9%) porcupine, and 1/59 (1.7%) European badger. Most of the infected animals (62/71) tested positive only in the earlobe tissue, only four animals (two roe deer and two wild boars) tested positive only in the spleen, and five animals (three roe deer and two red foxes) resulted positive for both tissues. L. infantum DNA was detected in the lymph nodes of 6/23 animals. L. infantum detection occurred in all seasons associated with low real-time PCR Ct values. Further research is needed in order to clarify the role of wildlife in the re-emerging focus of leishmaniasis in Northeast Italy.

8.
Front Vet Sci ; 9: 978901, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172614

RESUMEN

Infectious bursal disease virus (IBDV) is among the most relevant and widespread immunosuppressive agents, which can severely damage poultry farming by causing direct losses, predisposing the host to secondary diseases and reducing the efficacy of vaccination protocols against other infections. IBDV has thus been the object of intense control activities, largely based on routine vaccination. However, the need for protecting animals from the infection in the first period of the production cycle, when the bursa susceptibility is higher, clashes with the blanketing effect of maternally derived antibodies. To overcome this issue, other strategies have been developed besides live attenuated vaccines, including vector vaccines and immune complex (icx) ones. The present study aims to investigate, in field conditions, the efficacy of these approaches in preventing IBDV infection in laying chickens vaccinated with either live attenuated, vector or immune complex (icx) vaccines. For this purpose, a multicentric study involving 481 farms located in 11 European countries was organized and IBDV infection diagnosis and strain characterization was performed at 6 weeks of age using a molecular approach. Vaccine strains were commonly detected in flocks vaccinated with live or icx vaccines. However, a significantly higher number of field strains (characterized as very virulent IBDVs) was detected in flocks vaccinated with vector vaccines, suggesting their lower capability of preventing bursal colonization. Different from vector vaccines, live and icx ones have a marked bursal tropism. It can thus be speculated that vaccine virus replication in these sites could limit vvIBDV replication by direct competition or because of a more effective activation of innate immunity. Although such different behavior doesn't necessarily affect clinical protection, further studies should be performed to evaluate if vvIBDV replication could still be associated with subclinical losses and/or for viral circulation in a "vaccinated environment" could drive viral evolution and favor the emergence of vaccine-escape variants.

9.
Animals (Basel) ; 12(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35883359

RESUMEN

Colibacillosis is the most common bacterial disease in the poultry industry. The isolation of Escherichia coli (E. coli) strains with multiple resistance to various classes of antimicrobials has been increasing in recent years. In this study, antimicrobial resistance features, serotyping and the presence of avian pathogenic Escherichia coli (APEC) virulence genes were investigated on a total of 71 E. coli strains isolated during outbreaks of colibacillosis in laying hens. The correlation between these features was evaluated. The most frequently isolated serogroups were O2 and O88. Resistance was often detected with nalidixic acid (49%) and ampicillin (38%), while all strains were sensitive to ceftiofur and florfenicol. Overall, 25% of the isolates showed resistance to at least three or more antimicrobial classes (multidrug-resistant strains), and 56% of the isolates were defined as APEC strains (due to the presence of at least five virulence genes). Correlation between the different parameters (virulence genes, serogroup and antimicrobial resistance) did not reveal relevant associations. The comparison of the obtained results with those of similar studies highlighted the importance of continuous monitoring in order to have a better understanding of colibacillosis. An evaluation of the national epidemiological situation would allow, especially with regard to antimicrobial resistance, to focus on the right measures in order to prioritize the available resources for effective disease control.

10.
Animals (Basel) ; 12(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35739929

RESUMEN

A systematic surveillance against influenza A viruses (IAVs) in the Suidae population is essential, considering their role as IAV mixing vessels. However, the viral circulation in wild Sus scrofa species is poorly investigated in comparison to the knowledge of IAV infection dynamics in domestic pigs. This study investigated the circulation and the genetic diversity of wild boars' IAVs detected in the Emilia-Romagna region (2017-2022). A total of 4605 lung samples were screened via an M gene real-time RT-PCR for SwIAV; positive samples were subtyped by multiplex RT-PCR, and viral isolation was attempted. Isolated strains (3 out of the 17 positives) were fully sequenced to evaluate viral genotypic diversity. H1N1 was the most frequently detected subtype, with identification of H1pdm09N1 and H1avN1. Whole-genome phylogenetic analysis revealed SwIAVs belonging to different genotypes, with different genetic combinations, and highlighted the simultaneous circulation of the same genotypes in both pigs and wild boars, supporting the hypothesis of SwIAV spillover events at the wildlife-livestock interface. This study represents an update on the wild boar SwIAV Italian situation, and the strains' complete genome analysis showed an evolving and interesting situation that deserves further investigation.

11.
Microorganisms ; 10(4)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35456873

RESUMEN

The extensive use of antibiotics has contributed to the current antibiotic resistance crisis. Livestock infections of Salmonella spp, Clostridium spp. and E. coli antimicrobial-resistant bacteria represent a public threat to human and animal health. To reduce the incidence of these zoonoses, essential oils (EOs) could be effective antibiotic alternatives. This study aims at identifying EOs safe for use, effective both in complementary therapy and in the environmental sanitization of intensive farming. Natural products were chemo-characterized by gas chromatography. Three S. Typhimurium, three C. perfringens and four E. coli strains isolated from poultry and swine farms were used to assess the antimicrobial properties of nine EOs and a modified GR-OLI (mGR-OLI). The toxicity of the most effective ones (Cinnamomum zeylanicum, Cz; Origanum vulgare, Ov) was also evaluated on porcine spermatozoa and Galleria mellonella larvae. Cz, Ov and mGR-OLI showed the strongest antimicrobial activity; their volatile components were also able to significantly inhibit the growth of tested strains. In vitro, Ov toxicity was slightly lower than Cz, while it showed no toxicity on G. mellonella larvae. In conclusion, the study confirms the importance of evaluating natural products to consolidate the idea of safe EO applications in reducing and preventing intensive livestock infections.

12.
Antibiotics (Basel) ; 10(4)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810387

RESUMEN

We recently described the genetic antimicrobial resistance and virulence profile of a collection of 279 commensal E. coli of food-producing animal (FPA), pet, wildlife and human origin. Phenotypic antimicrobial resistance (AMR) and the role of commensal E. coli as reservoir of extra-intestinal pathogenic Escherichia coli (ExPEC) virulence-associated genes (VAGs) or as potential ExPEC pathogens were evaluated. The most common phenotypic resistance was to tetracycline (76/279, 27.24%), sulfamethoxazole/trimethoprim (73/279, 26.16%), streptomycin and sulfisoxazole (71/279, 25.45% both) among the overall collection. Poultry and rabbit were the sources mostly associated to AMR, with a significant resistance rate (p > 0.01) to quinolones, streptomycin, sulphonamides, tetracycline and, only for poultry, to ampicillin and chloramphenicol. Finally, rabbit was the source mostly associated to colistin resistance. Different pandemic (ST69/69*, ST95, ST131) and emerging (ST10/ST10*, ST23, ST58, ST117, ST405, ST648) ExPEC sequence types (STs) were identified among the collection, especially in poultry source. Both ST groups carried high number of ExPEC VAGs (pandemic ExPEC STs, mean = 8.92; emerging ExPEC STs, mean = 6.43) and showed phenotypic resistance to different antimicrobials (pandemic ExPEC STs, mean = 2.23; emerging ExPEC STs, mean = 2.43), suggesting their role as potential ExPEC pathogens. Variable phenotypic resistance and ExPEC VAG distribution was also observed in uncommon ExPEC lineages, suggesting commensal flora as a potential reservoir of virulence (mean = 3.80) and antimicrobial resistance (mean = 1.69) determinants.

13.
BMC Mol Cell Biol ; 22(1): 12, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33579204

RESUMEN

BACKGROUND: Enterocytes exert an absorptive and protective function in the intestine, and they encounter many different challenging factors such as feed, bacteria, and parasites. An intestinal epithelial in vitro model can help to understand how enterocytes are affected by these factors and contribute to the development of strategies against pathogens. RESULTS: The present study describes a novel method to culture and maintain primary chicken enterocytes and their characterization by immunofluorescence and biomolecular approaches. Starting from 19-day-old chicken embryos it was possible to isolate viable intestinal cell aggregates that can expand and produce a self-maintaining intestinal epithelial cell population that survives until 12 days in culture. These cells resulted positive in immunofluorescence to Cytokeratin 18, Zonula occludens 1, Villin, and Occludin that are common intestinal epithelial markers, and negative to Vimentin that is expressed by endothelial cells. Cells were cultured also on Transwell® permeable supports and trans-epithelial electrical resistance, was measured. This value gradually increased reaching 64 Ω*cm2 7 days after seeding and it remained stable until day 12. CONCLUSIONS: Based on these results it was confirmed that it is possible to isolate and maintain chicken intestinal epithelial cells in culture and that they can be suitable as in vitro intestinal model for further studies.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Separación Celular/métodos , Enterocitos/citología , Mucosa Intestinal/citología , Mucosa Intestinal/embriología , Animales , Proliferación Celular , Células Cultivadas , Embrión de Pollo , Pollos , Colagenasas/metabolismo , Medios de Cultivo , Desarrollo Embrionario , Mucosa Intestinal/enzimología , Tripsina/farmacología
14.
Antibiotics (Basel) ; 9(11)2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142685

RESUMEN

Salmonella spp. represent a public health concern for humans and animals due to the increase of antibiotic resistances. In this scenario, the use of essential oils (EOs) could be a valid tool against Salmonella contamination of meat. This work compares the in vitro effectiveness of an Italian mixture of feed additives based on EOs (GR-OLI) with EO of Origanum vulgare L., recently admitted by European Food Safety Authority (EFSA) for animal use. Twenty-nine Salmonella serotypes isolated from poultry and pig farms were used to assess GR-OLI and O. vulgare EO antimicrobial propeties. O. vulgare EO was active on the disaggregation of mature biofilm, while GR-OLI was capable of inhibiting biofilm formation and disaggregating preformed biofilm. Furthermore, GR-OLI inhibited bacterial adhesion to Caco-2 cells in a dose-dependent manner. Both products showed inhibition of bacterial growth at all time points tested. Finally, the synergistic action of GR-OLI with commonly used antibiotics against resistant strains was investigated. In conclusion, the mixture could be used both to reduce the meat contamination of Salmonella spp. before slaughter, and in synergy with low doses of ciprofloxacin against resistant strains. Although EOs as feed additives are already used in animal husbandry, no scientific study has ever highlighted their real antimicrobial potential.

15.
Poult Sci ; 99(11): 5350-5355, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33142451

RESUMEN

The anticoccidial activity of thymol, carvacrol, and saponins was assessed in an in vitro model of coccidiosis. Eimeria spp. sporozoites were collected from field samples, characterized, and used for 2 different invasion assays on Madin-Darby Bovine Kidney cells (MDBK). The cells were challenged with 5 × 104 sporozoites without (control) or with various treatments: saponins (10 ppm), thymol, and carvacrol (7 ppm each) or a combination of saponins, thymol, and carvacrol at 2 doses; MIX 1 (saponins 5 ppm, thymol 3.5 ppm, and carvacrol 3.5 ppm) and MIX 2 (saponins 10 ppm, thymol 7 ppm, and carvacrol 7 ppm). The treated cells were incubated at 37°C for 24 h (invasion assay 1) and for 2, 24, and 48 h (invasion assay 2). The efficiency of invasion was determined by counting the sporozoites left in the supernatant that were not able to invade the cells, whereas intracellular Eimeria DNA was detected by qPCR to confirm the data. Data were analyzed with ANOVA, and differences were considered significant when P value was ≤0.05. Data from invasion assay 1 showed that the thymol and carvacrol-containing blends significantly reduced invasion, especially in combination with saponins at the highest dose. Saponins alone did not have a strong inhibiting activity but acted synergistically with the other molecules. Interestingly, in invasion assay 2, it was found that the effect of the highest dose of the blend of saponins, thymol, and carvacrol was already visible at 2 h postinfection, whereas the other treatments were significantly successful at 24 h postinfection. The invasion assay protocol was designed to screen molecules in vitro starting from field fecal samples, and it can represent a potential tool in Eimeria research. Moreover, this study shows that invasion in MDBK cells by Eimeria sporozoites is inhibited in presence of thymol, carvacrol, and saponins, thus highlighting the anticoccidial potential of these compounds.


Asunto(s)
Cimenos , Interacciones Huésped-Parásitos , Saponinas , Timol , Animales , Bovinos , Línea Celular , Coccidiostáticos/farmacología , Cimenos/farmacología , Eimeria/efectos de los fármacos , Interacciones Huésped-Parásitos/efectos de los fármacos , Técnicas In Vitro , Saponinas/farmacología , Timol/farmacología
16.
Ital J Food Saf ; 9(2): 8552, 2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32913723

RESUMEN

Formaggio di Fossa di Sogliano is a traditional Italian Protected Designation of Origin (PDO) cheese ripened for a minimum of 5 months, with the feature of a ripening of at least 80 to at most 100 days in pits, digged into tuffaceous rocks according to medieval tradition of Italy. In this study, a challenge test using Listeria innocua as a surrogate of Listeria monocytogenes was performed, with the aim of increasing knowledge concerning the impact of the Fossa cheese process, and especially of the traditional ripening process of this PDO, on the behaviour of L. monocytogenes. Pasteurized milk was experimentally inoculated with 4.5 log CFU/mL cocktail by three L. innocua strains, and L. innocua and Mesophilic Lactic Acid Bacteria (LAB) counts as well as the evolution of temperatures, pH and aw values were monitored throughout the manufacturing and ripening processes. Throughout the ripening in maturation room a constant temperature of 8°C was observed reaching a temperature between 10 and 15.5°C during ripening into pit. In the final products data for LAB concentration, pH and aw values were roughly in accordance with literature, even if some differences were, probably due to variability of artisanal cheese productions. The numbers of L. innocua showed a slight decrease but remained stable until the end of ripening in maturation room, whereas a significant reduction of the microorganism was observed in the final product, at the end of the ripening into the pit. The findings give scientific evidence that the process of this PDO prevented the L. innocua growth, allowing us to speculate a similar behaviour of L. monocytogenes. Based on this study, the recommendation to extend as much as possible the ripening into pit (from 80 to 100 days) was provided to food business operators as a risk mitigation strategy to be implemented.

17.
Avian Pathol ; 49(2): 202-207, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31702386

RESUMEN

Marek's disease (MD) is a lymphoproliferative disease caused by Gallid alphaherpesvirus 2 (GaHV-2), which primarily affects chickens. However, the virus is also able to induce tumours in turkeys, albeit less frequently than in chickens. This study reports the molecular characterization of a GaHV-2 strain detected in a flock of Italian meat-type turkeys exhibiting visceral lymphomas. Sequencing and phylogenetic analysis of the meq gene revealed that the turkey GaHV-2 has molecular features of high virulence and genetic similarity with GaHV-2 strains recently detected in Italian commercial and backyard chickens. GaHV-2 is ubiquitous among chickens despite vaccination, and chicken-to-turkey transmission is hypothesized due to the presence of broilers in neighbouring pens.RESEARCH HIGHLIGHTS A GaHV-2 strain from Italian turkeys was molecularly characterized.The turkey strain presented molecular characteristics of high virulence in its meq gene.The turkey strain was closely related to previously detected chicken strains.


Asunto(s)
Herpesvirus Gallináceo 2 , Enfermedad de Marek/virología , Neoplasias/veterinaria , Pavos , Animales , Regulación Viral de la Expresión Génica , Herpesvirus Gallináceo 2/genética , Enfermedad de Marek/patología , Neoplasias/virología , Proteínas Oncogénicas Virales/aislamiento & purificación , Filogenia , Reacción en Cadena de la Polimerasa/veterinaria , Enfermedades de las Aves de Corral/virología
18.
Animals (Basel) ; 9(9)2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31492039

RESUMEN

Chestnut tannins (CT) and saturated short medium chain fatty acids (SMCFA) are valid alternatives to contrast the growth of pathogens in poultry rearing, representing a valid alternative to antibiotics. However, the effect of their blends has never been tested. Two blends of CT extract and Sn1-monoglycerides of SMCFA (SN1) were tested in vitro against the proliferation of Clostridium perfringens, Salmonella typhymurium, Escherichia coli, Campylobacter jejuni. The tested concentrations were: 3.0 g/kg of CT; 3.0 g/kg of SN1; 2.0 g/kg of CT and 1.0 g/kg of SN1; 1.0 g/kg of CT and 2.0 g/kg of SN1. Furthermore, their effect on broiler performances and meat quality was evaluated in vivo: one-hundred Ross 308 male birds were fed a basal diet with no supplement (control group) or supplemented with CT or SN1 or their blends at the same concentration used in the in vitro trial. The in vitro assay confirmed the effectiveness of the CT and SN1 mixtures in reducing the growth of the tested bacteria while the in vivo trial showed that broiler performances, animal welfare and meat quality were not negatively affected by the blends, which could be a promising alternative in replacing antibiotics in poultry production.

19.
PLoS One ; 13(12): e0203513, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30571679

RESUMEN

The genetic variability of Infectious bronchitis virus (IBV) is one of the main challenges for its control, hindering not only the development of effective vaccination strategies but also its classification and, consequently, epidemiology understanding. The 624/I and Q1 genotypes, now recognized to be part of the GI-16 lineage, represent an excellent example of the practical consequences of IBV molecular epidemiology limited knowledge. In fact, being their common origin unrecognized for a long time, independent epidemiological pictures were drawn for the two genotypes. To fix this misinterpretation, the present study reconstructs the history, population dynamics and spreading patterns of GI-16 lineage as a whole using a phylodynamic approach. A collection of worldwide available hypervariable region 1 and 2 (HVR12) and 3 (HVR3) sequences of the S1 protein was analysed together with 258 HVR3 sequences obtained from samples collected in Italy (the country where this genotype was initially identified) since 1963. The results demonstrate that after its emergence at the beginning of the XX century, GI-16 was able to persist until present days in Italy. Approximately in the late 1980s, it migrated to Asia, which became the main nucleus for further spreading to Middle East, Europe and especially South America, likely through multiple introduction events. A remarkable among-country diffusion was also demonstrated in Asia and South America. Interestingly, although most of the recent Italian GI-16 strains originated from ancestral viruses detected in the same country, a couple were closely related to Chinese ones, supporting a backward viral flow from China to Italy. Besides to the specific case-study results, this work highlights the misconceptions that originate from the lack of a unified nomenclature and poor molecular epidemiology data generation and sharing. This shortcoming appears particularly relevant since the described scenario could likely be shared by many other IBV genotypes and pathogens in general.


Asunto(s)
Pollos/virología , Infecciones por Coronavirus/genética , Genotipo , Virus de la Bronquitis Infecciosa/genética , Enfermedades de las Aves de Corral/genética , Animales , Infecciones por Coronavirus/epidemiología , Virus de la Bronquitis Infecciosa/aislamiento & purificación , Enfermedades de las Aves de Corral/epidemiología
20.
Asian Pac J Trop Med ; 10(12): 1161-1166, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29268972

RESUMEN

OBJECTIVE: To investigate some pathogenic characters of Salmonella enterica strains isolated from poultry. METHODS: Twenty-three genetically distinct Salmonella enterica strains, of different serovars and pulsotype, were examined for virulence traits. Resistance to gastric acid environment was estimated by measuring the percentage of survived bacterial cells after exposure for 2 h to a synthetic gastric juice. Strains were analyzed with PCR for the presence of the following virulence genes: mgtC and rhuM located on SPI-3, sopB and pipB located on SPI-5, Salmonella virulence plasmid (spv) R (spvR), spvB and spvC located on Salmonella plasmid virulence and sodCI, sopE, and gipA located on prophage. Finally, resistance to 21 antibiotics was tested with Kirby-Bauer method. RESULTS: A percentage of 82.60% of strains were resistant to gastric environment after induction and 60.87% of the strains exhibited constitutive resistance too. Nineteen different virulence profiles were detected. The phage related genes sodCI and sopE and the plasmid mediated operon spvR, spvB and spvC (spvRBC) were detected in 82.60%, 47.82% and 52.17% of strains, respectively. Typhimurium and Enteritidis strains showed the highest number of virulence genes. Twenty-one different antibiotic resistance profiles were obtained and two isolates (Typhimurium and Enteritidis) resulted sensible to all the tested molecules. The ampicillin, streptomycin, sulfonamide and tetracycline resistance profile was detected in seven isolates (30.43%). CONCLUSION: Our results show that paratyphoid Salmonella strains with several characters of pathogenicity, that may be cause of severe pathology in animals and humans, are circulating among poultry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...