Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 629(8012): 646-651, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693259

RESUMEN

The shaping of human embryos begins with compaction, during which cells come into close contact1,2. Assisted reproductive technology studies indicate that human embryos fail compaction primarily because of defective adhesion3,4. On the basis of our current understanding of animal morphogenesis5,6, other morphogenetic engines, such as cell contractility, could be involved in shaping human embryos. However, the molecular, cellular and physical mechanisms driving human embryo morphogenesis remain uncharacterized. Using micropipette aspiration on human embryos donated to research, we have mapped cell surface tensions during compaction. This shows a fourfold increase of tension at the cell-medium interface whereas cell-cell contacts keep a steady tension. Therefore, increased tension at the cell-medium interface drives human embryo compaction, which is qualitatively similar to compaction in mouse embryos7. Further comparison between human and mouse shows qualitatively similar but quantitively different mechanical strategies, with human embryos being mechanically least efficient. Inhibition of cell contractility and cell-cell adhesion in human embryos shows that, whereas both cellular processes are required for compaction, only contractility controls the surface tensions responsible for compaction. Cell contractility and cell-cell adhesion exhibit distinct mechanical signatures when faulty. Analysing the mechanical signature of naturally failing embryos, we find evidence that non-compacting or partially compacting embryos containing excluded cells have defective contractility. Together, our study shows that an evolutionarily conserved increase in cell contractility is required to generate the forces driving the first morphogenetic movement shaping the human body.


Asunto(s)
Adhesión Celular , Embrión de Mamíferos , Humanos , Animales , Ratones , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Femenino , Tensión Superficial , Desarrollo Embrionario , Morfogénesis , Fenómenos Biomecánicos , Masculino
2.
Reprod Biol Endocrinol ; 22(1): 50, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659014

RESUMEN

BACKGROUND: The Live Birth Rate (LBR) after day 5 (D5) blastocyst transfer is significantly higher than that with D6 embryos in both fresh and frozen-vitrified embryo transfer cycles, according to the most recently published meta-analyses. Therefore, for women obtaining only D6 blastocysts, the chances of pregnancy may be lower but nonetheless sufficient to warrant transferring such embryos. The best strategy for transfer (i.e., in fresh versus frozen cycles) remains unclear and there is a paucity of data on this subject. METHODS: A total of 896 couples with D6 single blastocyst transfers were retrospectively analyzed: patients receiving a fresh D6 embryo transfer (Fresh D6 transfer group, n = 109) versus those receiving a frozen-thawed D6 embryo transfer (Frozen D6 transfer group, n = 787). A subgroup comprising a freeze-all cycle without any previous fresh or frozen D5 embryo transfers (Elective frozen D6, n = 77) was considered and also compared with the Fresh D6 transfer group. We compared LBR between these two groups. Correlation between D6 blastocyst morphology according to Gardner's classification and live birth occurrence was also evaluated. Statistical analysis was carried out using univariate and multivariate logistic regression models. RESULTS: The LBR was significantly lower after a fresh D6 blastocyst transfer compared to the LBR with a frozen-thawed D6 blastocyst transfer [5.5% (6/109) vs. 12.5% (98/787), p = 0.034]. Comparison between LBR after Elective frozen D6 group to the Fresh D6 blastocyst transfers confirmed the superiority of frozen D6 blastocyst transfers. Statistical analysis of the blastocyst morphology parameters showed that both trophectoderm (TE) and inner cell mass (ICM) grades were significantly associated with the LBR after D6 embryo transfer (p < 0.001, p = 0.037). Multiple logistic regression revealed that frozen D6 thawed transfer was independently associated with a higher LBR compared with fresh D6 transfer (OR = 2.54; 95% CI: [1.05-6.17]; p = 0.038). Our results also show that transferring a good or top-quality D6 blastocyst increased the chances of a live birth by more than threefold. CONCLUSIONS: Our results indicate that transferring D6 blastocysts in frozen cycles improves the LBR, making it the best embryo transfer strategy for these slow-growing embryos. CLINICAL TRIAL NUMBER: Not applicable.


Asunto(s)
Tasa de Natalidad , Blastocisto , Criopreservación , Transferencia de Embrión , Índice de Embarazo , Humanos , Femenino , Embarazo , Transferencia de Embrión/métodos , Criopreservación/métodos , Estudios Retrospectivos , Adulto , Blastocisto/citología , Nacimiento Vivo , Fertilización In Vitro/métodos
3.
Biophys J ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38528761

RESUMEN

Compaction is the first morphogenetic movement of the eutherian mammals and involves a developmentally regulated adhesion process. Previous studies investigated cellular and mechanical aspects of compaction. During mouse and human compaction, cells spread onto each other as a result of a contractility-mediated increase in surface tension pulling at the edges of their cell-cell contacts. However, how compaction may affect the mechanical stability of cell-cell contacts remains unknown. Here, we used a dual pipette aspiration assay on cell doublets to quantitatively analyze the mechanical stability of compacting mouse embryos. We measured increased mechanical stability of contacts with rupture forces growing from 40 to 70 nN, which was highly correlated with cell-cell contact expansion. Analyzing the dynamic molecular reorganization of cell-cell contacts, we find minimal recruitment of the cell-cell adhesion molecule Cdh1 (also known as E-cadherin) to contacts but we observe its reorganization into a peripheral adhesive ring. However, this reorganization is not associated with increased effective bond density, contrary to previous reports in other adhesive systems. Using genetics, we reduce the levels of Cdh1 or replace it with a chimeric adhesion molecule composed of the extracellular domain of Cdh1 and the intracellular domain of Cdh2 (also known as N-cadherin). We find that reducing the levels of Cdh1 impairs the mechanical stability of cell-cell contacts due to reduced contact growth, which nevertheless show higher effective bond density than wild-type contacts of similar size. On the other hand, chimeric adhesion molecules cannot form large or strong contacts indicating that the intracellular domain of Cdh2 is unable to reorganize contacts and/or is mechanically weaker than the one of Cdh1 in mouse embryos. Together, we find that mouse embryo compaction mechanically strengthens cell-cell adhesion via the expansion of Cdh1 adhesive rings that maintain pre-compaction levels of effective bond density.

4.
Semin Cell Dev Biol ; 120: 22-31, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34253437

RESUMEN

During preimplantation development, the human embryo forms the blastocyst, the structure enabling uterine implantation. The blastocyst consists of an epithelial envelope, the trophectoderm, encompassing a fluid-filled lumen, the blastocoel, and a cluster of pluripotent stem cells, the inner cell mass. This specific architecture is crucial for the implantation and further development of the human embryo. Furthermore, the morphology of the human embryo is a prime determinant for clinicians to assess the implantation potential of in vitro fertilized human embryos, which constitutes a key aspect of assisted reproduction technology. Therefore, it is crucial to understand how the human embryo builds the blastocyst. As any material, the human embryo changes shape under the action of forces. Here, we review recent advances in our understanding of the mechanical forces shaping the blastocyst. We discuss the cellular processes responsible for generating morphogenetic forces that were studied mostly in the mouse and review the literature on human embryos to see which of them may be conserved. Based on the specific morphological defects commonly observed in clinics during human preimplantation development, we discuss how mechanical forces and their underlying cellular processes may be affected. Together, we propose that bringing tissue mechanics to the clinics will advance our understanding of human preimplantation development, as well as our ability to help infertile couples to have babies.


Asunto(s)
Blastocisto/fisiología , Animales , Humanos , Ratones
5.
Cell Stem Cell ; 28(9): 1625-1640.e6, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34004179

RESUMEN

Understanding lineage specification during human pre-implantation development is a gateway to improving assisted reproductive technologies and stem cell research. Here we employ pseudotime analysis of single-cell RNA sequencing (scRNA-seq) data to reconstruct early mouse and human embryo development. Using time-lapse imaging of annotated embryos, we provide an integrated, ordered, and continuous analysis of transcriptomics changes throughout human development. We reveal that human trophectoderm/inner cell mass transcriptomes diverge at the transition from the B2 to the B3 blastocyst stage, just before blastocyst expansion. We explore the dynamics of the fate markers IFI16 and GATA4 and show that they gradually become mutually exclusive upon establishment of epiblast and primitive endoderm fates, respectively. We also provide evidence that NR2F2 marks trophectoderm maturation, initiating from the polar side, and subsequently spreads to all cells after implantation. Our study pinpoints the precise timing of lineage specification events in the human embryo and identifies transcriptomics hallmarks and cell fate markers.


Asunto(s)
Desarrollo Embrionario , Transcriptoma , Animales , Blastocisto , Linaje de la Célula/genética , Desarrollo Embrionario/genética , Estratos Germinativos , Humanos , Ratones , Transcriptoma/genética
6.
Cell Rep ; 33(8): 108419, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33238118

RESUMEN

Human trophoblast stem cells (hTSCs) derived from blastocysts and first-trimester cytotrophoblasts offer an unprecedented opportunity to study the placenta. However, access to human embryos and first-trimester placentas is limited, thus preventing the establishment of hTSCs from diverse genetic backgrounds associated with placental disorders. Here, we show that hTSCs can be generated from numerous genetic backgrounds using post-natal cells via two alternative methods: (1) somatic cell reprogramming of adult fibroblasts with OCT4, SOX2, KLF4, MYC (OSKM) and (2) cell fate conversion of naive and extended pluripotent stem cells. The resulting induced/converted hTSCs recapitulated hallmarks of hTSCs including long-term self-renewal, expression of specific transcription factors, transcriptomic signature, and the potential to differentiate into syncytiotrophoblast and extravillous trophoblast cells. We also clarified the developmental stage of hTSCs and show that these cells resemble day 8 cytotrophoblasts. Altogether, hTSC lines of diverse genetic origins open the possibility to model both placental development and diseases in a dish.


Asunto(s)
Células Madre Pluripotentes/metabolismo , Trofoblastos/metabolismo , Diferenciación Celular , Femenino , Humanos , Embarazo
7.
Nat Commun ; 9(1): 360, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29367672

RESUMEN

Induced pluripotent stem cells (iPSCs) have considerably impacted human developmental biology and regenerative medicine, notably because they circumvent the use of cells of embryonic origin and offer the potential to generate patient-specific pluripotent stem cells. However, conventional reprogramming protocols produce developmentally advanced, or primed, human iPSCs (hiPSCs), restricting their use to post-implantation human development modeling. Hence, there is a need for hiPSCs resembling preimplantation naive epiblast. Here, we develop a method to generate naive hiPSCs directly from somatic cells, using OKMS overexpression and specific culture conditions, further enabling parallel generation of their isogenic primed counterparts. We benchmark naive hiPSCs against human preimplantation epiblast and reveal remarkable concordance in their transcriptome, dependency on mitochondrial respiration and X-chromosome status. Collectively, our results are essential for the understanding of pluripotency regulation throughout preimplantation development and generate new opportunities for disease modeling and regenerative medicine.


Asunto(s)
Blastocisto/citología , Células Madre Embrionarias/citología , Estratos Germinativos/citología , Células Madre Pluripotentes Inducidas/citología , Animales , Blastocisto/metabolismo , Células Cultivadas , Reprogramación Celular/genética , Técnicas de Reprogramación Celular , Desarrollo Embrionario/genética , Células Madre Embrionarias/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Estratos Germinativos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...