Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 22985, 2023 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-38151564

RESUMEN

Burn wounds are a common challenge for medical professionals. Current burn wound models hold several limitations, including a lack of comparability due to the heterogeneity of wounds and differences in individual wound healing. Hence, there is a need for reproducible in vivo models. In this study, we established a new burn wound model using the chorioallantoic membrane assay (CAM) as a surrogate model for animal experiments. The new experimental setup was tested by investigating the effects of the auspicious biophysical therapy, photobiomodulation (PBM), on the wound healing of an induced CAM burn wound with a metal stamp. PBM has been shown to positively influence wound healing through vascular proliferative effects and the increased secretion of chemotactic substances. The easily accessible burn wounds can be treated with various therapies. The model enables the analysis of ingrowing blood vessels (angiogenesis) and diameter and area of the wounds. The established model was used to test the effects of PBM on burn wound healing. PBM promoted angiogenesis in burn wounds on day 4 (p = 0.005). Furthermore, there was a not significant trend toward a higher number of vessels for day 6 (p = 0.065) in the irradiated group. Changes in diameter (p = 0.129) and the burn area (p = 0.131) were not significant. Our results suggest that CAM can be a suitable model for studying burn wounds. The novel experimental design enables reproducible and comparable studies on burn wound treatment.


Asunto(s)
Quemaduras , Terapia por Luz de Baja Intensidad , Animales , Membrana Corioalantoides , Angiogénesis , Cicatrización de Heridas , Quemaduras/radioterapia
2.
Cancers (Basel) ; 14(17)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36077809

RESUMEN

Angiogenesis is a highly regulated process. It promotes tissue regeneration and contributes to tumor growth. Existing therapeutic concepts interfere with different steps of angiogenesis. The quantification of the vasculature is of crucial importance for research on angiogenetic effects. The chorioallantoic membrane (CAM) assay is widely used in the study of angiogenesis. Ex ovo cultured chick embryos develop an easily accessible, highly vascularised membrane on the surface. Tumor xenografts can be incubated on this membrane enabling studies on cancer angiogenesis and other major hallmarks. However, there is no commonly accepted gold standard for the quantification of the vasculature of the CAM. We compared four widely used measurement techniques to identify the most appropriate one for the quantification of the vascular network of the CAM. The comparison of the different quantification methods suggested that the CAM assay application on the IKOSA platform is the most suitable image analysis application for the vasculature of the CAM. The new CAM application on the IKOSA platform turned out to be a reliable and feasible tool for practical use in angiogenesis research. This novel image analysis software enables a deeper exploration of various aspects of angiogenesis and might support future research on new anti-angiogenic strategies for cancer treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...