Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 340: 139827, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37586493

RESUMEN

Advanced materials for the efficient treatment of textile wastewater need to be developed for the sustainable growth of the textile industry. In this study, graphene oxide (GO) was modified by the incorporation of natural clay (bentonite) and mixed metal oxide (copper-cobalt oxide) to produce GO-based binary and ternary composites. Two binary composites, GO/bentonite and GO/Cu-Co Ox (oxide), and one ternary composite, GO/bentonite/Cu-Co Ox, were characterized by Fourier transform-infrared spectroscopy (FTIR), scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and Brunauer-Emmett-Teller (BET) analysis. The adsorption efficiency of these composites was evaluated against a cationic dye, Basic Blue 41 (BB41). The composites had several surface functional groups, and the ternary composite had tubular porous structures formed by the cross-linking of the bentonite and GO planes. The BET surface area of the ternary composite was 50% higher than that of the GO. The BB41 removals were 92, 89, 80, and 69% for GO/bentonite/Cu-Co oxide, GO/bentonite, GO and GO/Cu-Co oxide, respectively. The pseudo-2nd-order and intraparticle diffusion models best describe the kinetics results, indicating chemisorption and slow pore diffusion-controlled adsorption processes. The Langmuir isotherm-derived adsorption capacity of GO/bentonite/Cu-Co oxide was 351.1 mg/g, which was very close to the measured value. After five consecutive cycles, the ternary composite retained 90% BB41 removal efficiency compared to its 1st cycle. Electrostatic interaction and pore diffusion were predicted to be the controlling mechanisms for the adsorption of the BB41. The GO-based ternary composite can be a feasible and scalable adsorbent for BB41 in wastewater treatment.


Asunto(s)
Grafito , Contaminantes Químicos del Agua , Cobre/química , Bentonita , Óxidos , Grafito/química , Adsorción , Contaminantes Químicos del Agua/análisis , Cinética , Espectroscopía Infrarroja por Transformada de Fourier
2.
ACS Omega ; 7(23): 20145-20154, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35721894

RESUMEN

This study reports a simple one-step hydrothermal method for the preparation of a Ni(OH)2 and MnO2 intercalated rGO nanostructure as a potential supercapacitor electrode material. Having highly amorphous rGO layers with turbostratic and integrated wrinkled flower-like morphology, the as-prepared electrode material showed a high specific capacitance of 420 F g-1 and an energy density of 14.58 Wh kg-1 with 0.5 M Na2SO4 as the electrolyte in a symmetric two-electrode. With the successful intercalation of the γ-MnO2 and α-Ni(OH)2 in between the surface of the as-prepared rGO layers, the interlayer distance of the rGO nanosheets expanded to 0.87 nm. The synergistic effect of γ-MnO2, α-Ni(OH)2, and rGO exhibited the satisfying high cyclic stability with a capacitance retention of 82% even after 10 000 cycles. Thus, the as-prepared Ni(OH)2 and MnO2 intercalated rGO ternary hybrid is expected to contribute to the fabrication of a real-time high-performing supercapacitor device.

3.
Nano Converg ; 9(1): 10, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35188595

RESUMEN

This work reports the rational design of MnOx nanorods on 3D crushed reduced graphene oxide (MnOx/C-rGO) by chemical reduction of Ni-incorporated graphene oxide (GO) followed by chemical etching to remove Ni. The resulting MnOx/C-rGO composite synergistically integrates the electronic properties and geometry structure of MnOx and 3D C-rGO. As a result, MnOx/C-rGO shows a significantly higher specific capacitance (Csp) of 863 F g-1 than MnOx/2D graphene sheets (MnOx/S-rGO) (373 F g-1) and MnOx (200 F g-1) at a current density of 0.2 A g-1. Furthermore, when assembled into symmetric supercapacitors, the MnOx/C-rGO-based device delivers a higher Csp (288 F g-1) than MnOx/S-rGO-based device (75 F g-1) at a current density of 0.3 A g-1. The superior capacitive performance of the MnOx/C-rGO-based symmetric device is attributed to the enlarged accessible surface, reduced lamellar stacking of graphene, and improved ionic transport provided by the 3D architecture of MnOx/C-rGO. In addition, the MnOx/C-rGO-based device exhibits an energy density of 23 Wh kg-1 at a power density of 113 Wkg-1, and long-term cycling stability, demonstrating its promising potential for practical application.

4.
ACS Omega ; 7(51): 48007-48017, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36591134

RESUMEN

Development of efficient and environmentally benign materials is important to satisfy the increasing demand for energy storage materials. Nanostructured transition-metal oxides are attractive because of their variety in morphology, high conductivity, and high theoretical capacitance. In this work, the nanostructured MnO2 was successfully fabricated using a gel formation process followed by calcination at 400 °C (MNO4) and 700 °C (MNO7) in the presence of air. The suitability of the prepared materials for electrochemical capacitor application was investigated using graphite as an electrode substrate. The chemical, elemental, structural, morphological, and thermal characterizations of the materials were performed with relevant techniques. The structural and morphological analyses revealed to be a body-centered tetragonal crystal lattice with a nano-tablet-like porous surface. The capacitive performances of the MNO4- and MNO7-modified graphite electrodes were examined with cyclic voltammetry and chronopotentiometry in a 0.5 M Na2SO4 aqueous solution. The synthesized MNO7 demonstrated a higher specific capacitance (627.9 F g-1), energy density (31.4 Wh kg-1), and power density (803.5 W kg-1) value as compared to that of MNO4. After 400 cycles, the material MNO7 preserves 100% of capacitance as its initial capacitance. The highly conductive network of nanotablet structure and porous morphologies of MNO7 are most likely responsible for its high capacitive behavior. Such material characteristics deserve a good candidate for electrode material in energy storage applications.

5.
Analyst ; 146(11): 3654-3665, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-33949437

RESUMEN

The quantification of global 5-methylcytosine (5mC) content has emerged as a promising approach for the diagnosis and prognosis of cancers. However, conventional methods for the global 5mC analysis require large quantities of DNA and may not be useful for liquid biopsy applications, where the amount of DNA available is limited. Herein, we report magnetic nanoparticles-assisted methylated DNA immunoprecipitation (e-MagnetoMethyl IP) coupled with electrochemical quantification of global DNA methylation. Carboxyl (-COOH) group-functionalized iron oxide nanoparticles (C-IONPs) synthesized by a novel starch-assisted gel formation method were conjugated with anti-5mC antibodies through EDC/NHS coupling (anti-5mC/C-IONPs). Anti-5mC/C-IONPs were subsequently mixed with DNA samples, in which they acted as dispersible capture agents to selectively bind 5mC residues and capture the methylated fraction of genomic DNA. The target-bound Anti-5mC/C-IONPs were magnetically separated and directly adsorbed onto the gold electrode surface using gold-DNA affinity interaction. The amount of DNA adsorbed on the electrode surface, which corresponds to the DNA methylation level in the sample, was electrochemically estimated by differential pulse voltammetric (DPV) study of an electroactive indicator [Ru(NH3)6]3+ bound to the surface-adsorbed DNA. Using a 200 ng DNA sample, the assay could successfully detect differences as low as 5% in global DNA methylation levels with high reproducibility (relative standard deviation (% RSD) = <5% for n = 3). The method could also reproducibly analyze various levels of global DNA methylation in synthetic samples as well as in cell lines. The method avoids bisulfite treatment, does not rely on enzymes for signal generation, and can detect global DNA methylation using clinically relevant quantities of sample DNA without PCR amplification. We believe that this proof-of-concept method could potentially find applications for liquid biopsy-based global DNA methylation analysis in point-of-care settings.


Asunto(s)
Metilación de ADN , Nanopartículas de Magnetita , Técnicas Electroquímicas , Inmunoprecipitación , Reproducibilidad de los Resultados
6.
ACS Omega ; 6(1): 836-844, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33458534

RESUMEN

A variety of methods for removing heavy metal ions from wastewater have been developed but because of their low efficiency, further production of toxic sludge or other waste materials, high expense, and lengthy procedures, limited progress has been achieved to date. Polymeric hydrogel has been attracting particular attention for the effective removal of heavy metal ions from wastewater. Here, ionogenic polymeric hydrogels were prepared by free-radical copolymerization of a neutral acrylamide (AAm) monomer with an ionic comonomer in the presence of a suitable initiator and a cross-linker. Different types of ionic comonomers such as strongly acidic: 2-acrylamido-2-methylpropane sulfonic acid, weakly acidic: acrylic acid (AAc), and zwitterionic: 2-methacryloyloxy ethyl dimethyl-3-sulfopropyl ammonium hydroxide with varying amounts were incorporated into the poly(AAm) networks to fabricate the hydrogels. The heavy metal ions (Fe3+, Cr3+, and Hg2+) removal capacity of the fabricated hydrogels from an aqueous solution via electrostatic interactions, coordination bond formation, and a diffusion process was compared and contrasted. The poly(AAm) hydrogel containing weakly acidic AAc groups shows excellent removal capacity of heavy metal ions. The release and recovery of heavy metal ions from the hydrogel samples are also impressive. The compressive strength of hydrogels was found to be significantly high after incorporating heavy metal ions that will increase their potential applications in different sectors.

7.
J Hazard Mater ; 408: 124896, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33387722

RESUMEN

Herein, we report the fabrication of highly oxidized silver oxide/silver/tin(IV) oxide (HOSBTO or Ag3+-enriched AgO/Ag/SnO2) nanocomposite under a robust oxidative environment created with the use of concentrated nitric acid. Tin(IV) hydroxide nanofluid is added to the reaction mixture as a stabilizer for the Ag3+-enriched silver oxide in the nanocomposite. The formation of Ag nanoparticles in this nanocomposite originates from the decomposition of silver oxides during calcination at 600 °C. For comparison, poorly oxidized silver oxide/silver/tin(IV) oxide (POSBTO with formula AgO/Ag/SnO2) nanocomposite has also been prepared by following the same synthetic procedures, except for the use of concentrated nitric acid. Finally, we studied in detail the anti-pathogenic capabilities of both nanocomposites against four hazardous pathogens, including pathogenic fish bacterium (Stenotrophomonas maltophilia stain EP10), oomycete (Phytophthora cactorum strain P-25), and two different strains of pathogenic strawberry fungus, BRSP08 and BRSP09 (Collectotrichum siamense). The bioassays reveal that the as-prepared HOSBTO and POSBTO nanocomposites exhibit significant inhibitory activities against the tested pathogenic bacterium, oomycete, and fungus in a dose-dependent manner. However, the degree of dose-dependent effectiveness of the two nanocomposites against each pathogen largely varies.


Asunto(s)
Nanopartículas del Metal , Nanocompuestos , Animales , Antibacterianos , Óxidos , Plata , Compuestos de Plata , Estaño
8.
Chem Asian J ; 16(4): 296-308, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33237636

RESUMEN

We demonstrate a facile efficient way to fabricate activated carbon nanosheets (ACNSs) consisting of hierarchical porous carbon materials. Simply heating banana leaves with K2 CO3 produce ACNSs having a unique combination of macro-, meso- and micropores with a high specific surface area of ∼1459 m2 g-1 . The effects of different electrolytes on the electrochemical supercapacitor performance and stability of the ACNSs are tested using a two-electrode system. The specific capacitance (Csp ) values are 55, 114, and 190 F g-1 in aqueous 0.5 M sodium sulfate, organic 1 M tetraethylammonium tetrafluoroborate in acetonitrile, and pure ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6 ]) electrolytes, respectively. The ACNSs also shows the largest potential window of 3.0 V, the highest specific energy (59 Wh kg-1 ) and specific power (750 W kg-1 ) in [BMIM][PF6 ]. A mini-prototype device is prepared to demonstrate the practicality of the ACNSs.

9.
J Mol Model ; 26(9): 251, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32833166

RESUMEN

In this study, molecular dynamics (MD) simulations have been performed to explore the variation of ion density and electric potential due to electrode surface modification. Two different surface morphologies, having planer and slit pore with different conditions of surface charge, have been studied for graphene-MnO2 surface using LAMMPS. For different pore widths, the concentration of ions in the double layer is observed to be very low when the surface of the graphene-MnO2 electrode is charged. With a view to identify the optimal pore size for the simulation domain considered, three different widths for the nano-slit type pores and the corresponding ion-ion interactions are examined. Though this effect is negligible for pores with 9.23 and 3.55 Å widths, a considerable increase in the ionic concentration within the 7.10 Å pores is observed when the electrode is kept neutral. The edge region of these nano-slit pores leads to effective energy storage by promoting ion separation and a significantly higher charge accumulation is found to occur on the edges compared to the basal planes. For the simulation domain of the present study, partition coefficient is maximum for a pore size of 7.10 Å, indicating that the ions' penetration and movement into nano-slit pores are most favorable for this optimum pore size for MnO2-graphene electrodes with aqueous NaCl electrolyte. Graphical Abstract The importance of understanding the commercial feasibility of supercapacitor material has made qualitatively predicting the optimized electrode structure one of the main targets of energy related researches. While great progress has been made in recent years, a coherent theoretical picture of the optimized electrode structure remains elusive. This article discusses the most favorable design of supercapacitor electrode for ion-electrode interaction.

10.
Analyst ; 145(13): 4398-4420, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32436931

RESUMEN

In recent years, a new group of nanomaterials named nanozymes that exhibit enzyme-mimicking catalytic activity has emerged as a promising alternative to natural enzymes. Nanozymes can address some of the intrinsic limitations of natural enzymes such as high cost, low stability, difficulty in storage, and specific working conditions (i.e., narrow substrate, temperature and pH ranges). Thus, synthesis and applications of hybrid and stimuli-responsive advanced nanozymes could revolutionize the current practice in life sciences and biosensor applications. On the other hand, electrochemical biosensors have long been used as an efficient way for quantitative detection of analytes (biomarkers) of interest. As such, the use of nanozymes in electrochemical biosensors is particularly important to achieve low cost and stable biosensors for prognostics, diagnostics, and therapeutic monitoring of diseases. Herein, we summarize the recent advances in the synthesis and classification of common nanozymes and their application in electrochemical biosensor development. After briefly overviewing the applications of nanozymes in non-electrochemical-based biomolecular sensing systems, we thoroughly discuss the state-of-the-art advances in nanozyme-based electrochemical biosensors, including genosensors, immunosensors, cytosensors and aptasensors. The applications of nanozymes in microfluidic-based assays are also discussed separately. We also highlight the challenges of nanozyme-based electrochemical biosensors and provide some possible strategies to address these limitations. Finally, future perspectives on the development of nanozyme-based electrochemical biosensors for disease biomarker detection are presented. We envisage that standardization of nanozymes and their fabrication process may bring a paradigm shift in biomolecular sensing by fabricating highly specific, multi-enzyme mimicking nanozymes for highly sensitive, selective, and low-biofouling electrochemical biosensors.


Asunto(s)
Biomarcadores/análisis , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Nanopartículas del Metal/química , Catálisis , Línea Celular Tumoral , Humanos , Técnicas Analíticas Microfluídicas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...