Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
Int J Cosmet Sci ; 46(4): 544-552, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39113315

RESUMEN

Lecithin:retinol acyltransferase (LRAT) is the main enzyme catalysing the esterification of retinol to retinyl esters and, hence, is of central importance for retinol homeostasis. As retinol, by its metabolite retinoic acid, stimulates fibroblasts to synthesize collagen fibres and inhibits collagen-degrading enzymes, the inhibition of LRAT presents an intriguing strategy for anti-ageing ingredients by increasing the available retinol in the skin. Here, we synthesized several derivatives mimicking natural lecithin substrates as potential LRAT inhibitors. By exploring various chemical modifications of the core scaffold consisting of a central amino acid and an N-terminal acylsulfone, we explored 10 different compounds in a biochemical assay, resulting in two compounds with IC50 values of 21.1 and 32.7 µM (compounds 1 and 2), along with a simpler arginine derivative with comparative inhibitory potency. Supported by computational methods, we investigated their structure-activity relationship, resulting in the identification of several structural features associated with high inhibition of LRAT. Ultimately, we conducted an ex vivo study with human skin, demonstrating an increase of collagen III associated with a reduction of the skin ageing process. In conclusion, the reported compounds offer a promising approach to boost retinol abundance in human skin and might present a new generation of anti-ageing ingredients for cosmetic application.


La lécithine/rétinol acyltransférase (LRAT) est la principale enzyme qui catalyse l'estérification du rétinol en esters de rétinyle et, par conséquent, est d'une importance centrale pour l'homéostasie du rétinol. Étant donné que le rétinol, par son métabolite l'acide rétinoïque, stimule les fibroblastes pour synthétiser les fibres de collagène et inhibe les enzymes de dégradation du collagène, l'inhibition de la LRAT constitue une stratégie intéressante pour les ingrédients anti­âge en augmentant le rétinol disponible dans la peau. Ici, nous avons synthétisé plusieurs dérivés imitant les substrats naturels de la lécithine comme inhibiteurs de LRAT potentiels. En étudiant différentes modifications chimiques du noyau composé d'un acide aminé central et d'un acylsulfone N­terminal, nous avons étudié dix composés différents dans le cadre d'un essai biochimique; il en est résulté deux composés avec des valeurs de CI50 de 21.1 et 32.7 µm (composés 1 et 2), ainsi qu'un dérivé d'arginine plus simple avec une puissance inhibitrice comparative. Avec le soutien de méthodes computationnelles, nous avons étudié leur relation structure­activité, ce qui a permis d'identifier plusieurs caractéristiques structurelles associées à une inhibition élevée de la LRAT. Enfin, nous avons mené une étude ex vivo sur la peau humaine, démontrant une augmentation du collagène III associée à une réduction du processus de vieillissement de la peau. En conclusion, les composés rapportés offrent une approche prometteuse pour stimuler l'abondance du rétinol dans la peau humaine et pourraient aboutir à une nouvelle génération d'ingrédients anti­âge pour des applications cosmétiques.


Asunto(s)
Aciltransferasas , Inhibidores Enzimáticos , Vitamina A , Vitamina A/farmacología , Aciltransferasas/antagonistas & inhibidores , Humanos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Relación Estructura-Actividad , Piel/efectos de los fármacos , Piel/metabolismo
2.
Nat Commun ; 15(1): 6914, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134548

RESUMEN

Mitochondrial oxidative phosphorylation (OXPHOS) fuels cellular ATP demands. OXPHOS defects lead to severe human disorders with unexplained tissue specific pathologies. Mitochondrial gene expression is essential for OXPHOS biogenesis since core subunits of the complexes are mitochondrial-encoded. COX14 is required for translation of COX1, the central mitochondrial-encoded subunit of complex IV. Here we describe a COX14 mutant mouse corresponding to a patient with complex IV deficiency. COX14M19I mice display broad tissue-specific pathologies. A hallmark phenotype is severe liver inflammation linked to release of mitochondrial RNA into the cytosol sensed by RIG-1 pathway. We find that mitochondrial RNA release is triggered by increased reactive oxygen species production in the deficiency of complex IV. Additionally, we describe a COA3Y72C mouse, affected in an assembly factor that cooperates with COX14 in early COX1 biogenesis, which displays a similar yet milder inflammatory phenotype. Our study provides insight into a link between defective mitochondrial gene expression and tissue-specific inflammation.


Asunto(s)
Complejo IV de Transporte de Electrones , Inflamación , Hígado , Fosforilación Oxidativa , Especies Reactivas de Oxígeno , Animales , Especies Reactivas de Oxígeno/metabolismo , Ratones , Hígado/metabolismo , Hígado/patología , Inflamación/metabolismo , Inflamación/genética , Inflamación/patología , Complejo IV de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/genética , Mitocondrias/metabolismo , Humanos , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , Masculino , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Biosíntesis de Proteínas , Ratones Endogámicos C57BL , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Femenino , Mutación , Proteína 58 DEAD Box , Proteínas de la Membrana , Ciclooxigenasa 1
3.
J Transl Med ; 22(1): 670, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030538

RESUMEN

BACKGROUND: As key regulators of gene expression, microRNAs affect many cardiovascular mechanisms and have been associated with several cardiovascular diseases. In this study, we aimed to investigate the relation of whole blood microRNAs with several quantitative measurements of vascular function, and explore their biological role through an integrative microRNA-gene expression analysis. METHODS: Peripheral whole blood microRNA expression was assessed through RNA-Seq in 2606 participants (45.8% men, mean age: 53.93, age range: 30 to 95 years) from the Rhineland Study, an ongoing population-based cohort study in Bonn, Germany. Weighted gene co-expression network analysis was used to cluster microRNAs with highly correlated expression levels into 14 modules. Through linear regression models, we investigated the association between each module's expression and quantitative markers of vascular health, including pulse wave velocity, total arterial compliance index, cardiac index, stroke index, systemic vascular resistance index, reactive skin hyperemia and white matter hyperintensity burden. For each module associated with at least one trait, one or more hub-microRNAs driving the association were defined. Hub-microRNAs were further characterized through mapping to putative target genes followed by gene ontology pathway analysis. RESULTS: Four modules, represented by hub-microRNAs miR-320 family, miR-378 family, miR-3605-3p, miR-6747-3p, miR-6786-3p, and miR-330-5p, were associated with total arterial compliance index. Importantly, the miR-320 family module was also associated with white matter hyperintensity burden, an effect partially mediated through arterial compliance. Furthermore, hub-microRNA miR-192-5p was related to cardiac index. Functional analysis corroborated the relevance of the identified microRNAs for vascular function by revealing, among others, enrichment for pathways involved in blood vessel morphogenesis and development, angiogenesis, telomere organization and maintenance, and insulin secretion. CONCLUSIONS: We identified several microRNAs robustly associated with cardiovascular function, especially arterial compliance and cardiac output. Moreover, our results highlight miR-320 as a regulator of cerebrovascular damage, partly through modulation of vascular function. As many of these microRNAs were involved in biological processes related to vasculature development and aging, our results contribute to the understanding of vascular physiology and provide putative targets for cardiovascular disease prevention.


Asunto(s)
MicroARNs , Humanos , Masculino , Persona de Mediana Edad , Femenino , MicroARNs/sangre , MicroARNs/genética , Anciano , Adulto , Anciano de 80 o más Años , Redes Reguladoras de Genes , Regulación de la Expresión Génica , Vasos Sanguíneos/fisiología , Estudios de Cohortes , Ontología de Genes , Perfilación de la Expresión Génica
4.
bioRxiv ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39005272

RESUMEN

Astrocytes provide crucial support for neurons, contributing to synaptogenesis, synaptic maintenance, and neurotransmitter recycling. Under pathological conditions, deregulation of astrocytes contributes to neurodegenerative diseases such as Alzheimer's disease (AD), highlighting the growing interest in targeting astrocyte function to address early phases of AD pathogenesis. While most research in this field has focused on protein-coding genes, non-coding RNAs, particularly long non-coding RNAs (lncRNAs), have emerged as significant regulatory molecules. In this study, we identified the lncRNA PRDM16-DT as highly enriched in the human brain, where it is almost exclusively expressed in astrocytes. PRDM16-DT and its murine homolog, Prdm16os, are downregulated in the brains of AD patients and in AD models. In line with this, knockdown of PRDM16-DT and Prdm16os revealed its critical role in maintaining astrocyte homeostasis and supporting neuronal function by regulating genes essential for glutamate uptake, lactate release, and neuronal spine density through interactions with the RE1-Silencing Transcription factor (Rest) and Polycomb Repressive Complex 2 (PRC2). Notably, CRISPR-mediated overexpression of Prdm16os mitigated functional deficits in astrocytes induced by stimuli linked to AD pathogenesis. These findings underscore the importance of PRDM16-DT in astrocyte function and its potential as a novel therapeutic target for neurodegenerative disorders characterized by astrocyte dysfunction.

5.
Ther Apher Dial ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38837319

RESUMEN

INTRODUCTION: Extracellular vesicles (EVs) have been identified as playing a role in atherosclerosis. METHODS: A group of 37 hypercholesterolemic patients with atherosclerotic cardiovascular diseases (ASCVD) and 9 patients requiring hemodialysis (HD) were selected for the study. RESULTS: EVs were comparably reduced by various LA methods (Thermo: 87.66% ± 3.64, DALI: 87.96% ± 4.81, H.E.L.P.: 83.38% ± 11.98; represented as SEM). However, LDL-C (66%; 55%; 75%) and Lp(a) (72%; 67%; 79%) were less effectively reduced by DALI. There was no significant difference in the reduction of EVs when comparing different techniques, such as hemoperfusion (DALI; n = 13), a precipitation (H.E.L.P.; n = 5), and a double filtration procedure (Thermofiltration; n = 19). Additionally, no effect of hemodialysis on EVs reduction was found. CONCLUSIONS: The study suggests that EVs can be effectively removed by various LA procedures, and this effect appears to be independent of the specific LA procedure used, as compared to hemodialysis.

6.
Nature ; 628(8006): 145-153, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538785

RESUMEN

As hippocampal neurons respond to diverse types of information1, a subset assembles into microcircuits representing a memory2. Those neurons typically undergo energy-intensive molecular adaptations, occasionally resulting in transient DNA damage3-5. Here we found discrete clusters of excitatory hippocampal CA1 neurons with persistent double-stranded DNA (dsDNA) breaks, nuclear envelope ruptures and perinuclear release of histone and dsDNA fragments hours after learning. Following these early events, some neurons acquired an inflammatory phenotype involving activation of TLR9 signalling and accumulation of centrosomal DNA damage repair complexes6. Neuron-specific knockdown of Tlr9 impaired memory while blunting contextual fear conditioning-induced changes of gene expression in specific clusters of excitatory CA1 neurons. Notably, TLR9 had an essential role in centrosome function, including DNA damage repair, ciliogenesis and build-up of perineuronal nets. We demonstrate a novel cascade of learning-induced molecular events in discrete neuronal clusters undergoing dsDNA damage and TLR9-mediated repair, resulting in their recruitment to memory circuits. With compromised TLR9 function, this fundamental memory mechanism becomes a gateway to genomic instability and cognitive impairments implicated in accelerated senescence, psychiatric disorders and neurodegenerative disorders. Maintaining the integrity of TLR9 inflammatory signalling thus emerges as a promising preventive strategy for neurocognitive deficits.


Asunto(s)
Región CA1 Hipocampal , Roturas del ADN de Doble Cadena , Reparación del ADN , Inflamación , Memoria , Receptor Toll-Like 9 , Animales , Femenino , Masculino , Ratones , Envejecimiento/genética , Envejecimiento/patología , Región CA1 Hipocampal/fisiología , Centrosoma/metabolismo , Disfunción Cognitiva/genética , Condicionamiento Clásico , Matriz Extracelular/metabolismo , Miedo , Inestabilidad Genómica/genética , Histonas/metabolismo , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Memoria/fisiología , Trastornos Mentales/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neuroinflamatorias/genética , Neuronas/metabolismo , Neuronas/patología , Membrana Nuclear/patología , Receptor Toll-Like 9/deficiencia , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/inmunología , Receptor Toll-Like 9/metabolismo
7.
EMBO J ; 43(8): 1420-1444, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38528182

RESUMEN

Current approaches to the treatment of schizophrenia have mainly focused on the protein-coding part of the genome; in this context, the roles of microRNAs have received less attention. In the present study, we analyze the microRNAome in the blood and postmortem brains of schizophrenia patients, showing that the expression of miR-99b-5p is downregulated in both the prefrontal cortex and blood of patients. Lowering the amount of miR-99b-5p in mice leads to both schizophrenia-like phenotypes and inflammatory processes that are linked to synaptic pruning in microglia. The microglial miR-99b-5p-supressed inflammatory response requires Z-DNA binding protein 1 (Zbp1), which we identify as a novel miR-99b-5p target. Antisense oligonucleotides against Zbp1 ameliorate the pathological effects of miR-99b-5p inhibition. Our findings indicate that a novel miR-99b-5p-Zbp1 pathway in microglia might contribute to the pathogenesis of schizophrenia.


Asunto(s)
MicroARNs , Esquizofrenia , Animales , Humanos , Ratones , Microglía/metabolismo , MicroARNs/metabolismo , Proteínas de Unión al ARN/metabolismo , Esquizofrenia/genética
8.
Biology (Basel) ; 13(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38392287

RESUMEN

Enrichment of basal progenitors (BPs) in the developing neocortex is a central driver of cortical enlargement. The transcription factor Pax6 is known as an essential regulator in generation of BPs. H3 lysine 9 acetylation (H3K9ac) has emerged as a crucial epigenetic mechanism that activates the gene expression program required for BP pool amplification. In this current work, we applied immunohistochemistry, RNA sequencing, chromatin immunoprecipitation and sequencing, and the yeast two-hybrid assay to reveal that the BP-genic effect of H3 acetylation is dependent on Pax6 functionality in the developing mouse cortex. In the presence of Pax6, increased H3 acetylation caused BP pool expansion, leading to enhanced neurogenesis, which evoked expansion and quasi-convolution of the mouse neocortex. Interestingly, H3 acetylation activation exacerbates the BP depletion and corticogenesis reduction effect of Pax6 ablation in cortex-specific Pax6 mutants. Furthermore, we found that H3K9 acetyltransferase KAT2A/GCN5 interacts with Pax6 and potentiates Pax6-dependent transcriptional activity. This explains a genome-wide lack of H3K9ac, especially in the promoter regions of BP-genic genes, in the Pax6 mutant cortex. Together, these findings reveal a mechanistic coupling of H3 acetylation and Pax6 in orchestrating BP production and cortical expansion through the promotion of a BP gene expression program during cortical development.

9.
Mol Neurobiol ; 61(8): 5628-5645, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38217668

RESUMEN

Exercise has been recognized as a beneficial factor for cognitive health, particularly in relation to the hippocampus, a vital brain region responsible for learning and memory. Previous research has demonstrated that exercise-mediated improvement of learning and memory in humans and rodents correlates with increased adult neurogenesis and processes related to enhanced synaptic plasticity. Nevertheless, the underlying molecular mechanisms are not fully understood. With the aim to further elucidate these mechanisms, we provide a comprehensive dataset of the mouse hippocampal transcriptome at the single-cell level after 4 weeks of voluntary wheel-running. Our analysis provides a number of interesting observations. For example, the results suggest that exercise affects adult neurogenesis by accelerating the maturation of a subpopulation of Prdm16-expressing neurons. Moreover, we uncover the existence of an intricate crosstalk among multiple vital signaling pathways such as NF-κB, Wnt/ß-catenin, Notch, and retinoic acid (RA) pathways altered upon exercise in a specific cluster of excitatory neurons within the Cornu Ammonis (CA) region of the hippocampus. In conclusion, our study provides an important resource dataset and sheds further light on the molecular changes induced by exercise in the hippocampus. These findings have implications for developing targeted interventions aimed at optimizing cognitive health and preventing age-related cognitive decline.


Asunto(s)
Perfilación de la Expresión Génica , Hipocampo , Condicionamiento Físico Animal , Análisis de la Célula Individual , Transcriptoma , Animales , Hipocampo/metabolismo , Condicionamiento Físico Animal/fisiología , Transcriptoma/genética , Ratones Endogámicos C57BL , Ratones , Masculino , Neurogénesis , Neuronas/metabolismo , Transducción de Señal , Volición
10.
Sci Data ; 10(1): 849, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040703

RESUMEN

Understanding the molecular mechanisms underlying frontotemporal dementia (FTD) is essential for the development of successful therapies. Systematic studies on human post-mortem brain tissue of patients with genetic subtypes of FTD are currently lacking. The Risk and Modyfing Factors of Frontotemporal Dementia (RiMod-FTD) consortium therefore has generated a multi-omics dataset for genetic subtypes of FTD to identify common and distinct molecular mechanisms disturbed in disease. Here, we present multi-omics datasets generated from the frontal lobe of post-mortem human brain tissue from patients with mutations in MAPT, GRN and C9orf72 and healthy controls. This data resource consists of four datasets generated with different technologies to capture the transcriptome by RNA-seq, small RNA-seq, CAGE-seq, and methylation profiling. We show concrete examples on how to use the resulting data and confirm current knowledge about FTD and identify new processes for further investigation. This extensive multi-omics dataset holds great value to reveal new research avenues for this devastating disease.


Asunto(s)
Demencia Frontotemporal , Multiómica , Humanos , Lóbulo Frontal , Demencia Frontotemporal/genética , Mutación
11.
Front Neurosci ; 17: 1291446, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928731

RESUMEN

Increasing evidence reinforces the essential function of RNA modifications in development and diseases, especially in the nervous system. RNA modifications impact various processes in the brain, including neurodevelopment, neurogenesis, neuroplasticity, learning and memory, neural regeneration, neurodegeneration, and brain tumorigenesis, leading to the emergence of a new field termed neuroepitranscriptomics. Deficiency in machineries modulating RNA modifications has been implicated in a range of brain disorders from microcephaly, intellectual disability, seizures, and psychiatric disorders to brain cancers such as glioblastoma. The inaugural NSAS Challenge Workshop on Brain Epitranscriptomics hosted in Crans-Montana, Switzerland in 2023 assembled a group of experts from the field, to discuss the current state of the field and provide novel translational perspectives. A summary of the discussions at the workshop is presented here to simulate broader engagement from the general neuroscience field.

12.
Transl Psychiatry ; 13(1): 294, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37699900

RESUMEN

There is a strong medical need to develop suitable biomarkers to improve the diagnosis and treatment of depression, particularly in predicting response to certain therapeutic approaches such as electroconvulsive therapy (ECT). MicroRNAs are small non-coding RNAs that have the ability to influence the transcriptome as well as proteostasis at the systems level. Here, we investigate the role of circulating microRNAs in depression and response prediction towards ECT. Of the 64 patients with treatment-resistant major depression (MDD) who received ECT treatment, 62.5% showed a response, defined as a reduction of ≥50% in the MADRS total score from baseline. We performed smallRNA sequencing in blood samples that were taken before the first ECT, after the first and the last ECT. The microRNAome was compared between responders and non-responders. Co-expression network analysis identified three significant microRNA modules with reverse correlation between ECT- responders and non-responders, that were amongst other biological processes linked to inflammation. A candidate microRNA, namely miR-223-3p was down-regulated in ECT responders when compared to non-responders at baseline. In line with data suggesting a role of miR-223-3p in inflammatory processes we observed higher expression levels of proinflammatory factors Il-6, Il-1b, Nlrp3 and Tnf-α in ECT responders at baseline when compared to non-responders. ROC analysis of confirmed the diagnostic power of miR-223-3p demarcating ECT-responders from non-responder subjects (AUC = 0.76, p = 0.0031). Our data suggest that miR-223-3p expression and related cytokine levels could serve as predictors of response to ECT in individuals with treatment-resistant depressive disorders.


Asunto(s)
Trastorno Depresivo Mayor , Trastorno Depresivo Resistente al Tratamiento , Terapia Electroconvulsiva , MicroARNs , Humanos , Trastorno Depresivo Mayor/terapia , Depresión , MicroARNs/genética , Trastorno Depresivo Resistente al Tratamiento/terapia
13.
EMBO Mol Med ; 15(9): e17399, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37533404

RESUMEN

Mitochondria are central for cellular metabolism and energy supply. Barth syndrome (BTHS) is a severe disorder, due to dysfunction of the mitochondrial cardiolipin acyl transferase tafazzin. Altered cardiolipin remodeling affects mitochondrial inner membrane organization and function of membrane proteins such as transporters and the oxidative phosphorylation (OXPHOS) system. Here, we describe a mouse model that carries a G197V exchange in tafazzin, corresponding to BTHS patients. TAZG197V mice recapitulate disease-specific pathology including cardiac dysfunction and reduced oxidative phosphorylation. We show that mutant mitochondria display defective fatty acid-driven oxidative phosphorylation due to reduced levels of carnitine palmitoyl transferases. A metabolic switch in ATP production from OXPHOS to glycolysis is apparent in mouse heart and patient iPSC cell-derived cardiomyocytes. An increase in glycolytic ATP production inactivates AMPK causing altered metabolic signaling in TAZG197V . Treatment of mutant cells with AMPK activator reestablishes fatty acid-driven OXPHOS and protects mice against cardiac dysfunction.


Asunto(s)
Síndrome de Barth , Ratones , Animales , Síndrome de Barth/metabolismo , Síndrome de Barth/patología , Cardiolipinas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Glucólisis , Ácidos Grasos/metabolismo , Adenosina Trifosfato
15.
Schizophr Res Cogn ; 32: 100280, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36846489

RESUMEN

As core symptoms of schizophrenia, cognitive deficits contribute substantially to poor outcomes. Early life stress (ELS) can negatively affect cognition in patients with schizophrenia and healthy controls, but the exact nature of the mediating factors is unclear. Therefore, we investigated how ELS, education, and symptom burden are related to cognitive performance. The sample comprised 215 patients with schizophrenia (age, 42.9 ± 12.0 years; 66.0 % male) and 197 healthy controls (age, 38.5 ± 16.4 years; 39.3 % male) from the PsyCourse Study. ELS was assessed with the Childhood Trauma Screener (CTS). We used analyses of covariance and correlation analyses to investigate the association of total ELS load and ELS subtypes with cognitive performance. ELS was reported by 52.1 % of patients and 24.9 % of controls. Independent of ELS, cognitive performance on neuropsychological tests was lower in patients than controls (p < 0.001). ELS load was more closely associated with neurocognitive deficits (cognitive composite score) in controls (r = -0.305, p < 0.001) than in patients (r = -0.163, p = 0.033). Moreover, the higher the ELS load, the more cognitive deficits were found in controls (r = -0.200, p = 0.006), while in patients, this correlation was not significant after adjusting for PANSS. ELS load was more strongly associated with cognitive deficits in healthy controls than in patients. In patients, disease-related positive and negative symptoms may mask the effects of ELS-related cognitive deficits. ELS subtypes were associated with impairments in various cognitive domains. Cognitive deficits appear to be mediated through higher symptom burden and lower educational level.

16.
EMBO Mol Med ; 15(3): e14837, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36789546

RESUMEN

Multiple sulfatase deficiency (MSD, MIM #272200) results from pathogenic variants in the SUMF1 gene that impair proper function of the formylglycine-generating enzyme (FGE). FGE is essential for the posttranslational activation of cellular sulfatases. MSD patients display reduced or absent sulfatase activities and, as a result, clinical signs of single sulfatase disorders in a unique combination. Up to date therapeutic options for MSD are limited and mostly palliative. We performed a screen of FDA-approved drugs using immortalized MSD patient fibroblasts. Recovery of arylsulfatase A activity served as the primary readout. Subsequent analysis confirmed that treatment of primary MSD fibroblasts with tazarotene and bexarotene, two retinoids, led to a correction of MSD pathophysiology. Upon treatment, sulfatase activities increased in a dose- and time-dependent manner, reduced glycosaminoglycan content decreased and lysosomal position and size normalized. Treatment of MSD patient derived induced pluripotent stem cells (iPSC) differentiated into neuronal progenitor cells (NPC) resulted in a positive treatment response. Tazarotene and bexarotene act to ultimately increase the stability of FGE variants. The results lay the basis for future research on the development of a first therapeutic option for MSD patients.


Asunto(s)
Enfermedad por Deficiencia de Múltiples Sulfatasas , Humanos , Enfermedad por Deficiencia de Múltiples Sulfatasas/diagnóstico , Enfermedad por Deficiencia de Múltiples Sulfatasas/genética , Enfermedad por Deficiencia de Múltiples Sulfatasas/patología , Bexaroteno , Evaluación Preclínica de Medicamentos , Sulfatasas/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro
17.
Cell Rep ; 42(2): 112063, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36753414

RESUMEN

Extracellular vesicles (EVs) have emerged as mediators of cellular communication, in part via the delivery of associated microRNAs (miRNAs), small non-coding RNAs that regulate gene expression. We show that brain-derived neurotrophic factor (BDNF) mediates the sorting of miR-132-5p, miR-218-5p, and miR-690 in neuron-derived EVs. BDNF-induced EVs in turn increase excitatory synapse formation in recipient hippocampal neurons, which is dependent on the inter-neuronal delivery of these miRNAs. Transcriptomic analysis further indicates the differential expression of developmental and synaptogenesis-related genes by BDNF-induced EVs, many of which are predicted targets of miR-132-5p, miR-218-5p, and miR-690. Furthermore, BDNF-induced EVs up-regulate synaptic vesicle (SV) clustering in a transmissible manner, thereby increasing synaptic transmission and synchronous neuronal activity. As BDNF and EV-miRNAs miR-218 and miR-132 were previously implicated in neuropsychiatric disorders such as anxiety and depression, our results contribute to a better understanding of disorders characterized by aberrant neural circuit connectivity.


Asunto(s)
Vesículas Extracelulares , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Neuronas/metabolismo , Vesículas Extracelulares/metabolismo
18.
Cell Mol Gastroenterol Hepatol ; 15(5): 1219-1246, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36758798

RESUMEN

BACKGROUND & AIMS: Loss of AT-rich interactive domain-containing protein 1A (ARID1A) fosters acinar-to-ductal metaplasia (ADM) and pancreatic carcinogenesis by down-regulating transcription programs controlling acinar cell identity. However, how ARID1A reacts to metaplasia-triggering environmental cues remains elusive. Here, we aimed to elucidate the role of ARID1A in controlling ductal pancreatic gene signatures and deciphering hierarchical signaling cues determining ARID1A-dependent chromatin regulation during acinar cell reprogramming. METHODS: Acinar cell explants with differential ARID1A status were subjected to genome-wide expression analyses. The impact of epidermal growth factor receptor (EGFR) signaling, NFATc1 activity, and ARID1A status on acinar reprogramming processes were characterized by ex vivo ADM assays and transgenic mouse models. EGFR-dependent ARID1A chromatin binding was studied by chromatin immunoprecipitation sequencing analysis and cellular fractionation. RESULTS: EGFR signaling interferes with ARID1A-dependent transcription by inducing genome-wide ARID1A displacement, thereby phenocopying ARID1A loss-of-function mutations and inducing a shift toward ADM permissive ductal transcription programs. Moreover, we show that EGFR signaling is required to push ARID1A-deficient acinar cells toward a metaplastic phenotype. Mechanistically, we identified the transcription factor nuclear factor of activated T cells 1 (NFATc1) as the central regulatory hub mediating both EGFR signaling-induced genomic ARID1A displacement and the induction of ADM-promoting gene signatures in the absence of ARID1A. Consequently, pharmacologic inhibition of NFATc1 or its depletion in transgenic mice not only preserves genome-wide ARID1A occupancy, but also attenuates acinar metaplasia led by ARID1A loss. CONCLUSIONS: Our data describe an intimate relationship between environmental signaling and chromatin remodeling in orchestrating cell fate decisions in the pancreas, and illustrate how ARID1A loss influences transcriptional regulation in acinar cell reprogramming.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Animales , Células Acinares/metabolismo , Cromatina , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/genética , Reprogramación Celular , Factores de Transcripción/genética , Receptores ErbB/genética , Ratones Transgénicos , Metaplasia , Proteínas de Unión al ADN/genética , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo
19.
Proc Natl Acad Sci U S A ; 120(9): e2204933120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36812208

RESUMEN

N6-methyladenosine (m6A) regulates mRNA metabolism. While it has been implicated in the development of the mammalian brain and in cognition, the role of m6A in synaptic plasticity, especially during cognitive decline, is not fully understood. In this study, we employed methylated RNA immunoprecipitation sequencing to obtain the m6A epitranscriptome of the hippocampal subregions CA1, CA3, and the dentate gyrus and the anterior cingulate cortex (ACC) in young and aged mice. We observed a decrease in m6A levels in aged animals. Comparative analysis of cingulate cortex (CC) brain tissue from cognitively intact human subjects and Alzheimer's disease (AD) patients showed decreased m6A RNA methylation in AD patients. m6A changes common to brains of aged mice and AD patients were found in transcripts linked to synaptic function including calcium/calmodulin-dependent protein kinase 2 (CAMKII) and AMPA-selective glutamate receptor 1 (Glua1). We used proximity ligation assays to show that reduced m6A levels result in decreased synaptic protein synthesis as exemplified by CAMKII and GLUA1. Moreover, reduced m6A levels impaired synaptic function. Our results suggest that m6A RNA methylation controls synaptic protein synthesis and may play a role in cognitive decline associated with aging and AD.


Asunto(s)
Enfermedad de Alzheimer , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Humanos , Ratones , Animales , Anciano , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Hipocampo/metabolismo , Enfermedad de Alzheimer/metabolismo , Envejecimiento/metabolismo , ARN/metabolismo , Mamíferos/genética
20.
J Parkinsons Dis ; 13(2): 179-196, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36744345

RESUMEN

BACKGROUND: Synucleinopathies are disorders characterized by the abnormal accumulation of α-synuclein (aSyn). Synaptic compromise is observed in synucleinopathies parallel to aSyn aggregation and is accompanied by transcript deregulation. OBJECTIVE: We sought to identify microRNAs associated with synaptic processes that may contribute to synaptic dysfunction and degeneration in synucleinopathies. METHODS: We performed small RNA-sequencing of midbrain from 6-month-old transgenic mice expressing A30P mutant aSyn, followed by comparative expression analysis. We then used real-time quantitative polymerase chain reaction (qPCR) for validation. Functional analysis was performed in primary neurons by biochemical assays and imaging. RESULTS: We found several deregulated biological processes linked to the synapse. miR-101a-3p was validated as a synaptic miRNA upregulated in aSyn Tg mice and in the cortex of dementia with Lewy bodies patients. Mice and primary cultured neurons overexpressing miR-101a-3p showed downregulation of postsynaptic proteins GABA Ab2 and SAPAP3 and altered dendritic morphology resembling synaptic plasticity impairments and/or synaptic damage. Interestingly, primary cultured neuron exposure to recombinant wild-type aSyn species efficiently increased miR-101a-3p levels. Finally, a dynamic role of miR-101a-3p in synapse plasticity was shown by identifying downregulation of miR-101a-3p in a condition of enhanced synaptic plasticity modelled in Wt animals housed in enriched environment. CONCLUSION: To conclude, we correlated pathologic aSyn with high levels of miR-101a-3p and a novel dynamic role of the miRNA in synaptic plasticity.


Asunto(s)
MicroARNs , Enfermedad de Parkinson , Sinucleinopatías , Ratones , Animales , Sinucleinopatías/genética , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Ratones Transgénicos , MicroARNs/genética , Plasticidad Neuronal , Proteínas del Tejido Nervioso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA