Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Magn Reson ; 166(2): 135-46, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14729025

RESUMEN

On-line nuclear magnetic resonance spectroscopy (on-line NMR) is a powerful technique for reaction and process monitoring. Different set-ups for direct coupling of reaction and separation equipment with on-line NMR spectroscopy are described. NMR spectroscopy can be used to obtain both qualitative and quantitative information from complex reacting multicomponent mixtures for equilibrium or reaction kinetic studies. Commercial NMR probes can be used at pressures up to 35 MPa and temperatures up to 400 K. Applications are presented for studies of equilibria and kinetics of complex formaldehyde-containing mixtures as well as homogeneously and heterogeneously catalyzed esterification kinetics. Direct coupling of a thin-film evaporator is described as an example for the benefits of on-line NMR spectroscopy in process monitoring.

2.
Anal Bioanal Chem ; 375(8): 1111-5, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12733025

RESUMEN

In many technical processes, complex multicomponent mixtures have to be handled, for example, in reaction or separation equipment. High-resolution NMR spectroscopy is an excellent tool to study these mixtures and gain insight in their behavior in the processes. For on-line studies under process conditions, flow NMR probes can be used in a wide range of temperature and pressure. A major challenge in engineering applications of NMR spectroscopy is the need for quantitative evaluation. Flow rates, recovery times, and other parameters of the on-line NMR experiments have to be optimized for this purpose. Since it is generally prohibitive to use deuterated solvents in engineering applications, suitable techniques for field homogenization and solvent signal suppression are needed. Two examples for the application of on-line NMR spectroscopic experiments in process engineering are presented, studies on chemical equilibria and reaction kinetics of the technically important system formaldehyde-water-methanol and investigations on reactive gas absorption of CO(2) in aqueous solutions of monoethanolamine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...