Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Microbiol Resour Announc ; : e0105623, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809039

RESUMEN

A subgroup of Salmonella (S.) enterica subsp. enterica serovar Paratyphi B is significantly associated with invasive infections in humans. We report the complete genome sequence of a potentially invasive. S. Paratyphi B isolated from a mute swan (Cygnus olor) found dead at an urban recreation park in Berlin, Germany.

2.
Int J Food Microbiol ; 410: 110490, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37992554

RESUMEN

Salmonella enterica subsp. enterica serovar Infantis (S. Infantis) is one of the "top five Salmonella serovars" of clinical significance in the European Union (EU). Antimicrobial resistant and extended spectrum ß-lactamase (ESBL) AmpC-producing S. Infantis have been described in food production systems and human clinical samples in Italy. Recently, an increase of MDR S. Infantis carrying blaCTX-M genes involved in 3rd generation cephalosporin resistance was noticed in the EU, including Italy, mainly due to the spread of S. Infantis harboring a pESI-like plasmid. The aim of this study was to investigate the occurrence of the S. Infantis pESI-like plasmid among antibiotic resistant S. Infantis strains isolated at different points of the food chain, and to provide a phylogenetic analysis to gain further insight on their transmission pathways from 'farm to fork'. MDR S. Infantis strains (n. 35) isolated from 2016 to 2021 at different stages of the food chain (animals, food, food-related environments, and humans) were investigated with in depth molecular characterization using real-time PCR, S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and whole genome sequencing (WGS). Our study reported the occurrence of S. Infantis strains harboring pESI-like plasmids, carrying blaCTX-M-1 genes, in Central Italy, at different sampling points along the food chain. Results confirmed the presence of a plasmid with a molecular size around 224-310 kb, thus consistent with the pESI-like, in 97 % of the 35 samples investigated. Two variants of S. Infantis pESI-like IncFIB(K)_1_Kpn3 were detected, one associated with the European clone carrying blaCTX-M-1 (21 isolates) and the other associated with U.S. isolates carrying blaCTX-M-65 (2 isolates, pESI-like U.S. variant). The majority was resistant to 3rd generation cephalosporins but none of the strains tested positive for the carbapenemase encoding genes. A total of 118 virulence genes were identified in isolates harboring the pESI-like plasmid. cgMLST and SNP-based analysis revealed the presence of one main cluster, composed by strains isolated from the environment, animals, food and humans. The results of this investigation underline the importance of phylogenetic studies to monitor and understand pathogen and AMR spread in a One Health approach.


Asunto(s)
Salmonella enterica , Salmonella , Animales , Humanos , Filogenia , Granjas , Salmonella/genética , Plásmidos/genética , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Italia , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética
4.
Front Microbiol ; 14: 1253362, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38094626

RESUMEN

For successful elucidation of a food-borne infection chain, the availability of high-quality sequencing data from suspected microbial contaminants is a prerequisite. Commonly, those investigations are a joint effort undertaken by different laboratories and institutes. To analyze the extent of variability introduced by differing wet-lab procedures on the quality of the sequence data we conducted an interlaboratory study, involving four bacterial pathogens, which account for the majority of food-related bacterial infections: Campylobacter spp., Shiga toxin-producing Escherichia coli, Listeria monocytogenes, and Salmonella enterica. The participants, ranging from German federal research institutes, federal state laboratories to universities and companies, were asked to follow their routine in-house protocols for short-read sequencing of 10 cultures and one isolated bacterial DNA per species. Sequence and assembly quality were then analyzed centrally. Variations within isolate samples were detected with SNP and cgMLST calling. Overall, we found that the quality of Illumina raw sequence data was high with little overall variability, with one exception, attributed to a specific library preparation kit. The variability of Ion Torrent data was higher, independent of the investigated species. For cgMLST and SNP analysis results, we found that technological sequencing artefacts could be reduced by the use of filters, and that SNP analysis was more suited than cgMLST to compare data of different contributors. Regarding the four species, a minority of Campylobacter isolate data showed the in comparison highest divergence with regard to sequence type and cgMLST analysis. We additionally compared the assembler SPAdes and SKESA for their performance on the Illumina data sets of the different species and library preparation methods and found overall similar assembly quality metrics and cgMLST statistics.

5.
Front Microbiol ; 14: 1284929, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033583

RESUMEN

Salmonella enterica subsp. enterica serovar Agona has a history of causing food-borne outbreaks and any emergence of multidrug-resistant (MDR) isolates in novel food products is of concern. Particularly, in food products frequently consumed without sufficient heating prior to consumption. Here, we report about the MDR isolate, 18-SA00377, which had been isolated from a dietary supplement in Germany in 2018 and submitted to the German National Reference Laboratory for Salmonella. WGS-based comparative genetic analyses were conducted to find a potential reservoir of the isolate itself or mobile genetic elements associated with MDR. As a phylogenetic analysis did not yield any closely related S. Agona isolates, either globally or from Germany, a detailed analysis of the largest plasmid (295,499 bp) was performed as it is the main carrier of resistances. A combined approach of long-read and short-read sequencing enabled the assembly of the isolate's chromosome and its four plasmids. Their characterization revealed the presence of 23 different antibiotic resistance genes (ARGs), conferring resistance to 12 different antibiotic drug classes, as well as genes conferring resistance to six different heavy metals. The largest plasmid, pSE18-SA00377-1, belongs to the IncHI2 plasmid family and carries 16 ARGs, that are organized as two distinct clusters, with each ARG associated with putative composite transposons. Through a two-pronged approach, highly similar plasmids to pSE18-SA00377-1 were identified in the NCBI database and a search for Salmonella isolates with a highly similar ARG resistance profile was conducted. Mapping and structural comparisons between pSE18-SA00377-1 and these plasmids and Salmonella isolates showed that both the plasmid backbone and identical or similar ARG clusters can be found not only in Salmonella isolates, originating mostly from a wide variety of livestock, but also in a diverse range of bacterial genera of varying geographical origins and isolation sources. Thus, it can be speculated that the host range of pSE18-SA00377-1 is not restricted to Salmonella and its spread already occurred in different bacterial populations. Overall, this hints at a complex history for pSE18-SA00377-1 and highlights the importance of surveilling multidrug-resistant S. enterica isolates, especially in novel food items that are not yet heavily regulated.

6.
Front Microbiol ; 14: 1188679, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37362934

RESUMEN

Caenorhabditis (C.) elegans has become a popular toxicological and biological test organism in the last two decades. Furthermore, the role of C. elegans as an alternative for replacing or reducing animal experiments is continuously discussed and investigated. In the current study, we investigated whether C. elegans survival assays can help in determining differences in the virulence of Salmonella enterica strains and to what extent C. elegans assays could replace animal experiments for this purpose. We focused on three currently discussed examples where we compared the longevity of C. elegans when fed (i) with S. enterica serovar Enteritidis vaccination or wild-type strains, (ii) with lipopolysaccharide (LPS) deficient rough or LPS forming smooth S. enterica serovar Enteritidis, and (iii) with an S. enterica subsp. diarizonae strain in the presence or absence of the typical pSASd plasmid encoding a bundle of putative virulence factors. We found that the C. elegans survival assay could indicate differences in the longevity of C. elegans when fed with the compared strain pairs to a certain extent. Putatively higher virulent S. enterica strains reduced the lifespan of C. elegans to a greater extent than putatively less virulent strains. The C. elegans survival assay is an effective and relatively easy method for classifying the virulence of different bacterial isolates in vivo, but it has some limitations. The assay cannot replace animal experiments designed to determine differences in the virulence of Salmonella enterica strains. Instead, we recommend using the described method for pre-screening bacterial strains of interest to select the most promising candidates for further animal experiments. The C. elegans assay possesses the potential to reduce the number of animal experiments. Further development of the C. elegans assay in conjunction with omics technologies, such as transcriptomics, could refine results relating to the estimation of the virulent potential of test organisms.

7.
Int J Food Microbiol ; 379: 109860, 2022 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-35933921

RESUMEN

Insects are increasingly used as alternative protein sources and ingredients of foodstuffs produced in industrial scale. Previous studies on the microbial status of insect-based foods revealed that classical foodborne pathogens such as Salmonella spp., Campylobacter spp., Listeria monocytogenes or pathogenic Escherichia coli are rarely detected, whereas particularly spore-forming bacteria with pathogenic potential such as species of the Bacillus cereus group or Clostridium species may pose a food safety risk. However, detailed descriptions of the encountered pathogenic bacteria in insect foods are scarce. We investigated a variety of 73 food products with insect or other arthropod ingredients on the occurrence of potential bacterial pathogens. These included B. cereus (sensu lato (s.l.)), Clostridium perfringens and Clostridioides difficile as representatives of spore-formers and Salmonella spp. and Shiga toxin producing and enteropathogenic E. coli (STEC/EPEC) as representatives of non-spore-forming Enterobacteriaceae. Most of the investigated food products complied with food safety standards regarding the presence of pathogens considered. However, one cricket product contained two Salmonella enterica subspecies enterica serovars (S. Wandsworth and S. Stanley). B. cereus (s.l.) was found in 42 samples (58 %), of which six contained B. cereus (s.l.) at levels higher than 103 cfu/g. The highest B. cereus (s.l.) counts of 3.8 × 105 cfu/g were found in a product with boiled and dried scorpions. Clostridium perfringens was detected in twelve samples (16 %), whereas Clostridioides difficile and STEC/EPEC were not detected in any of the samples. Remarkably, five samples contained the B. cereus (s.l.) species B. cytotoxicus. Moreover, strikingly high numbers of B. cereus (s.l.) isolates carried the capsule syntheses genes capBCADE, which were presumably located on the B. cereus pBFI_2 plasmid. Whole genome sequencing-based phylogenetic analysis suggested a high relatedness for only very few of the B. cytotoxicus and cap-positive isolates, respectively.


Asunto(s)
Bacillus cereus , Bacillus , Animales , Clostridium perfringens , Escherichia coli , Microbiología de Alimentos , Insectos , Filogenia , Salmonella , Toxina Shiga/genética
8.
PLoS One ; 17(7): e0271317, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35839265

RESUMEN

Extended-spectrum beta-lactamase (ESBL)-producing Escherichia (E.) coli have been widely described as the cause of treatment failures in humans around the world. The origin of human infections with these microorganisms is discussed controversially and in most cases hard to identify. Since they pose a relevant risk to human health, it becomes crucial to understand their sources and the transmission pathways. In this study, we analyzed data from different studies in Germany and grouped ESBL-producing E. coli from different sources and human cases into subtypes based on their phenotypic and genotypic characteristics (ESBL-genotype, E. coli phylogenetic group and phenotypic antimicrobial resistance pattern). Then, a source attribution model was developed in order to attribute the human cases to the considered sources. The sources were from different animal species (cattle, pig, chicken, dog and horse) and also from patients with nosocomial infections. The human isolates were gathered from community cases which showed to be colonized with ESBL-producing E. coli. We used the attribution model first with only the animal sources (Approach A) and then additionally with the nosocomial infections (Approach B). We observed that all sources contributed to the human cases, nevertheless, isolates from nosocomial infections were more related to those from human cases than any of the other sources. We identified subtypes that were only detected in the considered animal species and others that were observed only in the human population. Some subtypes from the human cases could not be allocated to any of the sources from this study and were attributed to an unknown source. Our study emphasizes the importance of human-to-human transmission of ESBL-producing E. coli and the different role that pets, livestock and healthcare facilities may play in the transmission of these resistant bacteria. The developed source attribution model can be further used to monitor future trends. A One Health approach is necessary to develop source attribution models further to integrate also wildlife, environmental as well as food sources in addition to human and animal data.


Asunto(s)
Infección Hospitalaria , Infecciones por Escherichia coli , Animales , Antibacterianos/farmacología , Bovinos , Perros , Escherichia coli , Infecciones por Escherichia coli/microbiología , Alemania/epidemiología , Caballos , Humanos , Filogenia , Porcinos , beta-Lactamasas/metabolismo
9.
J Antimicrob Chemother ; 77(7): 1883-1893, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35466367

RESUMEN

BACKGROUND: Real-time quantitative PCR (qPCR) is an affordable method to quantify antimicrobial resistance gene (ARG) targets, allowing comparisons of ARG abundance along animal production chains. OBJECTIVES: We present a comparison of ARG abundance across various animal species, production environments and humans in Europe. AMR variation sources were quantified. The correlation of ARG abundance between qPCR data and previously published metagenomic data was assessed. METHODS: A cross-sectional study was conducted in nine European countries, comprising 9572 samples. qPCR was used to quantify abundance of ARGs [aph(3')-III, erm(B), sul2, tet(W)] and 16S rRNA. Variance component analysis was conducted to explore AMR variation sources. Spearman's rank correlation of ARG abundance values was evaluated between pooled qPCR data and earlier published pooled metagenomic data. RESULTS: ARG abundance varied strongly among animal species, environments and humans. This variation was dominated by between-farm variation (pigs) or within-farm variation (broilers, veal calves and turkeys). A decrease in ARG abundance along pig and broiler production chains ('farm to fork') was observed. ARG abundance was higher in farmers than in slaughterhouse workers, and lowest in control subjects. ARG abundance showed a high correlation (Spearman's ρ > 0.7) between qPCR data and metagenomic data of pooled samples. CONCLUSIONS: qPCR analysis is a valuable tool to assess ARG abundance in a large collection of livestock-associated samples. The between-country and between-farm variation of ARG abundance could partially be explained by antimicrobial use and farm biosecurity levels. ARG abundance in human faeces was related to livestock antimicrobial resistance exposure.


Asunto(s)
Antibacterianos , Antiinfecciosos , Animales , Antibacterianos/farmacología , Bovinos , Pollos , Estudios Transversales , Farmacorresistencia Bacteriana , Heces , Genes Bacterianos , Humanos , Ganado , Carne , ARN Ribosómico 16S/genética , Porcinos
10.
J Antimicrob Chemother ; 77(4): 969-978, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35061866

RESUMEN

OBJECTIVES: The occurrence and zoonotic potential of antimicrobial resistance (AMR) in pigs and broilers has been studied intensively in past decades. Here, we describe AMR levels of European pig and broiler farms and determine the potential risk factors. METHODS: We collected faeces from 181 pig farms and 181 broiler farms in nine European countries. Real-time quantitative PCR (qPCR) was used to quantify the relative abundance of four antimicrobial resistance genes (ARGs) [aph(3')-III, erm(B), sul2 and tet(W)] in these faeces samples. Information on antimicrobial use (AMU) and other farm characteristics was collected through a questionnaire. A mixed model using country and farm as random effects was performed to evaluate the relationship of AMR with AMU and other farm characteristics. The correlation between individual qPCR data and previously published pooled metagenomic data was evaluated. Variance component analysis was conducted to assess the variance contribution of all factors. RESULTS: The highest abundance of ARG was for tet(W) in pig faeces and erm(B) in broiler faeces. In addition to the significant positive association between corresponding ARG and AMU levels, we also found on-farm biosecurity measures were associated with relative ARG abundance in both pigs and broilers. Between-country and between-farm variation can partially be explained by AMU. Different ARG targets may have different sample size requirements to represent the overall farm level precisely. CONCLUSIONS: qPCR is an efficient tool for targeted assessment of AMR in livestock-related samples. The AMR variation between samples was mainly contributed to by between-country, between-farm and within-farm differences, and then by on-farm AMU.


Asunto(s)
Antibacterianos , Antiinfecciosos , Animales , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Pollos , Farmacorresistencia Bacteriana , Granjas , Heces , Factores de Riesgo , Porcinos
11.
Environ Res ; 208: 112715, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033551

RESUMEN

Livestock feces with antimicrobial resistant bacteria reaches the farm floor, manure pit, farm land and wider environment by run off and aerosolization. Little research has been done on the role of dust in the spread of antimicrobial resistance (AMR) in farms. Concentrations and potential determinants of antimicrobial resistance genes (ARGs) in farm dust are at present not known. Therefore in this study absolute ARG levels, representing the levels people and animals might be exposed to, and relative abundances of ARGs, representing the levels in the bacterial population, were quantified in airborne farm dust using qPCR. Four ARGs were determined in 947 freshly settled farm dust samples, captured with electrostatic dustfall collectors (EDCs), from 174 poultry (broiler) and 159 pig farms across nine European countries. By using linear mixed modeling, associations with fecal ARG levels, antimicrobial use (AMU) and farm and animal related parameters were determined. Results show similar relative abundances in farm dust as in feces and a significant positive association (ranging between 0.21 and 0.82) between the two reservoirs. AMU in pigs was positively associated with ARG abundances in dust from the same stable. Higher biosecurity standards were associated with lower relative ARG abundances in poultry and higher relative ARG abundances in pigs. Lower absolute ARG levels in dust were driven by, among others, summer season and certain bedding materials for poultry, and lower animal density and summer season for pigs. This study indicates different pathways that contribute to shaping the dust resistome in livestock farms, related to dust generation, or affecting the bacterial microbiome. Farm dust is a large reservoir of ARGs from which transmission to bacteria in other reservoirs can possibly occur. The identified determinants of ARG abundances in farm dust can guide future research and potentially farm management policy.


Asunto(s)
Farmacorresistencia Bacteriana , Polvo , Granjas , Animales , Antibacterianos/farmacología , Pollos , Farmacorresistencia Bacteriana/genética , Polvo/análisis , Europa (Continente) , Porcinos
12.
Microorganisms ; 9(9)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34576806

RESUMEN

The aim of this study was to gain an overview of the genetic diversity of Salmonella found in wildlife in Germany. We were particularly interested in exploring whether wildlife acts as a reservoir of certain serovars/subtypes or antimicrobial resistance (AMR) genes. Moreover, we wanted to explore the potential of Salmonella in spreading from wildlife to livestock and humans. To answer these questions, we sequenced 260 Salmonella enterica subsp. enterica isolates sampled between 2002 and 2020 from wildlife across Germany, using short-read whole genome sequencing. We found, consistent with previous findings, that some Salmonella sequence types are associated with certain animal species, such as S. Choleraesuis ST145 with wild boar and S. Enteritidis ST183 with hedgehogs. Antibiotic resistance was detected in 14.2% of all isolates, with resistance against important WATCH group antibiotics present in a small number of isolates. We further found that wildlife isolates do not form separate phylogenetic clusters distant to isolates from domestic animals and foodstuff, thus indicating frequent transmission events between these reservoirs. Overall, our study shows that Salmonella in German wildlife are diverse, with a low AMR burden and close links to Salmonella populations of farm and food-production environments.

14.
Microorganisms ; 9(8)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34442630

RESUMEN

Contamination of fresh produce with human pathogens poses an important risk for consumers, especially after raw consumption. Moreover, if microorganisms are internalized, no removal by means of further hygienic measures would be possible. Human pathogenic bacteria identified in these food items are mostly of human or animal origin and an adaptation to this new niche and particularly for internalization would be presumed. This study compares a plant-internalized and an animal-borne Salmonella enterica subsp. enterica serovar Choleraesuis aiming at the identification of adaptation of the plant-internalized strain to its original environment. For this purpose, a phenotypical characterization by means of growth curves under conditions resembling the indigenous environment from the plant-internalized strain and further analyses using Pulsed-field gel electrophoresis and Matrix-assisted laser desorption ionization time of flight spectrometry were assessed. Furthermore, comparative genomic analyses by means of single nucleotide polymorphisms and identification of present/absent genes were performed. Although some phenotypical and genetic differences could be found, no signs of a specific adaptation for colonization and internalization in plants could be clearly identified. This could suggest that any Salmonella strain could directly settle in this niche without any evolutionary process being necessary. Further comparative analysis including internalized strains would be necessary to assess this question. However, these kinds of strains are not easily available.

15.
Front Microbiol ; 12: 626941, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33643254

RESUMEN

Despite extensive monitoring programs and preventative measures, Salmonella spp. continue to cause tens of thousands human infections per year, as well as many regional and international food-borne outbreaks, that are of great importance for public health and cause significant socio-economic costs. In Germany, salmonellosis is the second most common cause of bacterial diarrhea in humans and is associated with high hospitalization rates. Whole-genome sequencing (WGS) combined with data analysis is a high throughput technology with an unprecedented discriminatory power, which is particularly well suited for targeted pathogen monitoring, rapid cluster detection and assignment of possible infection sources. However, an effective implementation of WGS methods for large-scale microbial pathogen detection and surveillance has been hampered by the lack of standardized methods, uniform quality criteria and strategies for data sharing, all of which are essential for a successful interpretation of sequencing data from different sources. To overcome these challenges, the national GenoSalmSurv project aims to establish a working model for an integrated genome-based surveillance system of Salmonella spp. in Germany, based on a decentralized data analysis. Backbone of the model is the harmonization of laboratory procedures and sequencing protocols, the implementation of open-source bioinformatics tools for data analysis at each institution and the establishment of routine practices for cross-sectoral data sharing for a uniform result interpretation. With this model, we present a working solution for cross-sector interpretation of sequencing data from different sources (such as human, veterinarian, food, feed and environmental) and outline how a decentralized data analysis can contribute to a uniform cluster detection and facilitate outbreak investigations.

16.
Microbiol Resour Announc ; 10(10)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707316

RESUMEN

Salmonella enterica subsp. enterica serotype Choleraesuis is a foodborne pathogen with zoonotic potential. We report the draft genome sequence and a closed plasmid sequence from a plant-internalized S. Choleraesuis strain that was isolated from the pulp of a Spanish Galia melon purchased from a German supermarket in 2015.

17.
Int J Antimicrob Agents ; 56(4): 106131, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32763373

RESUMEN

BACKGROUND: High antimicrobial use (AMU) and antimicrobial resistance (AMR) in veal calves remain a source of concern. As part of the EFFORT project, the association between AMU and the abundance of faecal antimicrobial resistance genes (ARGs) in veal calves in three European countries was determined. METHODS: In 2015, faecal samples of veal calves close to slaughter were collected from farms located in France, Germany and the Netherlands (20 farms in France, 20 farms in the Netherlands and 21 farms in Germany; 25 calves per farm). Standardized questionnaires were used to record AMU and farm characteristics. In total, 405 faecal samples were selected for DNA extraction and quantitative polymerase chain reaction to quantify the abundance (16S normalized concentration) of four ARGs [aph(3')-III, ermB, sul2 and tetW] encoding for resistance to frequently used antimicrobials in veal calves. Multiple linear mixed models with random effects for country and farm were used to relate ARGs to AMU and farm characteristics. RESULTS: A significant positive association was found between the use of trimethoprim/sulfonamides and the concentration of sul2 in faeces from veal calves. A higher weight of calves on arrival at the farm was negatively associated with aph(3')-III and ermB. Lower concentrations of aph(3')-III were found at farms with non-commercial animals present. Furthermore, farms using only water for the cleaning of stables had a significantly lower abundance of faecal ermB and tetW compared with other farms. CONCLUSION: A positive association was found between the use of trimethoprim/sulfonamides and the abundance of sul2 in faeces in veal calves. Additionally, other relevant risk factors associated with ARGs in veal calves were identified, such as weight on arrival at the farm and cleaning practices.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Sulfonamidas/farmacología , Trimetoprim/farmacología , Animales , Antibacterianos/administración & dosificación , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Bovinos , Enfermedades de los Bovinos/microbiología , Combinación de Medicamentos , Heces/microbiología , Francia , Alemania , Kanamicina Quinasa/genética , Metiltransferasas/genética , Países Bajos , Uso Excesivo de Medicamentos Recetados , Reacción en Cadena en Tiempo Real de la Polimerasa , Encuestas y Cuestionarios
19.
Front Microbiol ; 11: 80, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117115

RESUMEN

The polymyxin antibiotic colistin has been used in decades for treatment and prevention of infectious diseases in livestock. Nowadays, it is even considered as last-line treatment option for severe human infections caused by multidrug- and carbapenem-resistant Gram-negative bacteria. Therefore, the discovery of plasmid-mediated mobile colistin resistance (mcr) genes raised major public health concern. The aim of our study was to analyze colistin-resistant Salmonella enterica strains from animals, food, feed and the environment collected at the National Reference Laboratory for Salmonella in Germany on the presence of mcr-1 to mcr-9 genes. Altogether 407 colistin-resistant (MIC >2 mg/L) Salmonella isolates received between 2011 and 2018 were selected and screened by PCR using a published mcr-1 to mcr-5 as well as a newly developed mcr-6 to mcr-9 multiplex PCR protocol. 254 of 407 (62.4%) isolates harbored either mcr-1 (n = 175), mcr-4 (n = 53), mcr-5 (n = 18) or mcr-1 and mcr-9 (n = 8). The number of mcr-positive isolates ranged from 19 (2017) to 64 (2012) per year. WGS revealed that none of our isolates harbored the mcr-9.1 gene. Instead, two novel mcr-9 variants were observed, which both were affected by frameshift mutations and are probably non-functional. The mcr-harboring isolates were mainly derived from animals (77.2%) or food (20.1%) and could be assigned to ten different Salmonella serovars. Many of the isolates were multidrug-resistant. Co-occurrence of mcr-1 and AmpC or ESBL genes was observed in eight isolates. Our findings suggest that mcr genes are widely spread among colistin-resistant Salmonella isolates from livestock and food in Germany. Potential transfer of mcr-harboring isolates along the food chain has to be considered critically.

20.
Ann Work Expo Health ; 64(2): 125-137, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31883001

RESUMEN

OBJECTIVES: Slaughterhouse staff is occupationally exposed to antimicrobial resistant bacteria. Studies reported high antimicrobial resistance gene (ARG) abundances in slaughter pigs. This cross-sectional study investigated occupational exposure to tetracycline (tetW) and macrolide (ermB) resistance genes and assessed determinants for faecal tetW and ermB carriage among pig slaughterhouse workers. METHODS: During 2015-2016, 483 faecal samples and personal questionnaires were collected from workers in a Dutch pig abattoir, together with 60 pig faecal samples. Human dermal and respiratory exposure was assessed by examining 198 carcass, 326 gloves, and 33 air samples along the line, next to 198 packed pork chops to indicate potential consumer exposure. Samples were analyzed by qPCR (tetW, ermB). A job exposure matrix was created by calculating the percentage of tetW and ermB positive carcasses or gloves for each job position. Multiple linear regression models were used to link exposure to tetW and ermB carriage. RESULTS: Workers are exposed to tetracycline and macrolide resistance genes along the slaughter line. Tetw and ermB gradients were found for carcasses, gloves, and air filters. One packed pork chop contained tetW, ermB was non-detectable. Human faecal tetW and ermB concentrations were lower than in pig faeces. Associations were found between occupational tetW exposure and human faecal tetW carriage, yet, not after model adjustments. Sampling round, nationality, and smoking were determinants for ARG carriage. CONCLUSION: We demonstrated clear environmental tetracycline and macrolide resistance gene exposure gradients along the slaughter line. No robust link was found between ARG exposure and human faecal ARG carriage.


Asunto(s)
Mataderos , Exposición Profesional , Animales , Antibacterianos/farmacología , Estudios Transversales , Farmacorresistencia Bacteriana/efectos de los fármacos , Macrólidos , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...