Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Cell Rep ; 43(7): 114395, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38941187

RESUMEN

Macrophages play crucial roles in organ-specific functions and homeostasis. In the adrenal gland, macrophages closely associate with sinusoidal capillaries in the aldosterone-producing zona glomerulosa. We demonstrate that macrophages preserve capillary specialization and modulate aldosterone secretion. Using macrophage-specific deletion of VEGF-A, single-cell transcriptomics, and functional phenotyping, we found that the loss of VEGF-A depletes PLVAP+ fenestrated endothelial cells in the zona glomerulosa, leading to increased basement membrane collagen IV deposition and subendothelial fibrosis. This results in increased aldosterone secretion, called "haptosecretagogue" signaling. Human aldosterone-producing adenomas also show capillary rarefaction and basement membrane thickening. Mice with myeloid cell-specific VEGF-A deletion exhibit elevated serum aldosterone, hypokalemia, and hypertension, mimicking primary aldosteronism. These findings underscore macrophage-to-endothelial cell signaling as essential for endothelial cell specialization, adrenal gland function, and blood pressure regulation, with broader implications for other endocrine organs.

2.
Biomedicines ; 12(5)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38791039

RESUMEN

Acute myocardial infarction (AMI) is one of the leading causes of death worldwide. Cell apoptosis in the myocardium plays an important role in ischemia and reperfusion (I/R) injury, leading to cardiac damage and dysfunction. Platelets are major players in hemostasis and play a crucial role in vessel occlusion, inflammation, and cardiac remodeling after I/R. Here, we studied the impact of platelets on cell apoptosis in the myocardium using a close-chest mouse model of AMI. We found caspase-3-positive resident cardiac cells, while leukocytes were negative for caspase-3. Using two different mouse models of thrombocytopenia, we detected a significant reduction in caspase-3 positive cells in the infarct border zone after I/R injury. Further, we identified platelet FasL to induce cell apoptosis via the extrinsic pathway of Fas receptor activation of target cells. Mechanistically, hypoxia triggers platelet adhesion to FasR, suggesting that platelet-induced apoptosis is elevated after I/R. Platelet-specific FasL knock-out mice showed reduced Bax and Bcl2 expression, suggesting that platelets modulate the intrinsic and extrinsic pathways of apoptosis, leading to reduced infarct size after myocardial I/R injury. Thus, a new mechanism for how platelets contribute to tissue homeostasis after AMI was identified that should be validated in patients soon.

3.
Matrix Biol ; 123: 34-47, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37783236

RESUMEN

Pancreatic ß-cell dysfunction and death are central to the pathogenesis of type 2 diabetes (T2D). We identified a novel role for the inflammatory extracellular matrix polymer hyaluronan (HA) in this pathophysiology. Low concentrations of HA were present in healthy pancreatic islets. However, HA substantially accumulated in cadaveric islets of T2D patients and islets of the db/db mouse model of T2D in response to hyperglycemia. Treatment with 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis, or the deletion of the main HA receptor CD44, preserved glycemic control and insulin concentrations in db/db mice despite ongoing weight gain, indicating a critical role for this pathway in T2D pathogenesis. 4-MU treatment and the deletion of CD44 likewise preserved glycemic control in other settings of ß-cell injury including streptozotocin treatment and islet transplantation. Mechanistically, we found that 4-MU increased the expression of the apoptosis inhibitor survivin, a downstream transcriptional target of CD44 dependent on HA/CD44 signaling, on ß-cells such that caspase 3 activation did not result in ß-cell apoptosis. These data indicated a role for HA accumulation in diabetes pathogenesis and suggested that it may be a viable target to ameliorate ß-cell loss in T2D. These data are particularly exciting, because 4-MU is already an approved drug (also known as hymecromone), which could accelerate translation of these findings to clinical studies.


Asunto(s)
Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , Ratones , Animales , Humanos , Ácido Hialurónico/metabolismo , Diabetes Mellitus Tipo 2/genética , Himecromona/farmacología , Islotes Pancreáticos/metabolismo , Obesidad/genética , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo
4.
BMC Cardiovasc Disord ; 23(1): 232, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37138228

RESUMEN

BACKGROUND: ST-segment elevation myocardial infarction (STEMI) still causes significant mortality and morbidity despite best-practice revascularization and adjunct medical strategies. Within the STEMI population, there is a spectrum of higher and lower risk patients with respect to major adverse cardiovascular and cerebral events (MACCE) or re-hospitalization due to heart failure. Myocardial and systemic metabolic disorders modulate patient risk in STEMI. Systematic cardiocirculatory and metabolic phenotyping to assess the bidirectional interaction of cardiac and systemic metabolism in myocardial ischemia is lacking. METHODS: Systemic organ communication in STEMI (SYSTEMI) is an all-comer open-end prospective study in STEMI patients > 18 years of age to assess the interaction of cardiac and systemic metabolism in STEMI by systematically collecting data on a regional and systemic level. Primary endpoint will be myocardial function, left ventricular remodelling, myocardial texture and coronary patency at 6 month after STEMI. Secondary endpoint will be all-cause death, MACCE, and re-hospitalisation due to heart failure or revascularisation assessed 12 month after STEMI. The objective of SYSTEMI is to identify metabolic systemic and myocardial master switches that determine primary and secondary endpoints. In SYSTEMI 150-200 patients are expected to be recruited per year. Patient data will be collected at the index event, within 24 h, 5 days as well as 6 and 12 months after STEMI. Data acquisition will be performed in multilayer approaches. Myocardial function will be assessed by using serial cardiac imaging with cineventriculography, echocardiography and cardiovascular magnetic resonance. Myocardial metabolism will be analysed by multi-nuclei magnetic resonance spectroscopy. Systemic metabolism will be approached by serial liquid biopsies and analysed with respect to glucose and lipid metabolism as well as oxygen transport. In summary, SYSTEMI enables a comprehensive data analysis on the levels of organ structure and function alongside hemodynamic, genomic and transcriptomic information to assess cardiac and systemic metabolism. DISCUSSION: SYSTEMI aims to identify novel metabolic patterns and master-switches in the interaction of cardiac and systemic metabolism to improve diagnostic and therapeutic algorithms in myocardial ischemia for patient-risk assessment and tailored therapy. TRIAL REGISTRATION: Trial Registration Number: NCT03539133.


Asunto(s)
Enfermedad de la Arteria Coronaria , Insuficiencia Cardíaca , Intervención Coronaria Percutánea , Infarto del Miocardio con Elevación del ST , Humanos , Infarto del Miocardio con Elevación del ST/diagnóstico por imagen , Infarto del Miocardio con Elevación del ST/terapia , Estudios de Cohortes , Estudios Prospectivos , Intervención Coronaria Percutánea/efectos adversos , Enfermedad de la Arteria Coronaria/complicaciones , Insuficiencia Cardíaca/etiología , Resultado del Tratamiento
5.
bioRxiv ; 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36909502

RESUMEN

Pancreatic ß-cell dysfunction and death are central to the pathogenesis of type 2 diabetes (T2D). We have identified a novel role for the inflammatory extracellular matrix polymer hyaluronan (HA) in this pathophysiology. Low levels of HA are present in healthy pancreatic islets. However, HA substantially accumulates in cadaveric islets of human T2D and islets of the db/db mouse model of T2D in response to hyperglycemia. Treatment with 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis, or the deletion of the major HA receptor CD44, preserve glycemic control and insulin levels in db/db mice despite ongoing weight gain, indicating a critical role for this pathway in T2D pathogenesis. 4-MU treatment and the deletion of CD44 likewise preserve glycemic control in other settings of ß-cell injury including streptozotocin treatment and islet transplantation. Mechanistically, we find that 4-MU increases the expression of the apoptosis inhibitor survivin, a downstream transcriptional target of CD44 dependent on HA/CD44 signaling, on ß-cells such that caspase 3 activation does not result in ß-cell apoptosis. These data indicate a role for HA accumulation in diabetes pathogenesis and suggest that it may be a viable target to ameliorate ß-cell loss in T2D. These data are particularly exciting, because 4-MU is already an approved drug (also known as hymecromone), which could accelerate translation of these findings to clinical studies.

6.
Materials (Basel) ; 16(4)2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36836985

RESUMEN

The aim of this study was to find a suitable material combination to avoid cement excess in the marginal region of one-piece zirconia implant-supported restorations by means of a hybrid crown consisting of a meso- and a suprastructure. One-piece zirconia implants (n = 120) were embedded in epoxy resin. Microfilled resin composite mesostructures (n = 60), designed as caps, were bonded on the implant abutment with a primer only. A molar crown was constructed and cemented with a resin cement on top of the mesostructure as a suprastructure out of feldspar ceramic (n = 12), lithium-disilicate (n = 24), or zirconia (n = 24). Fracture load (n = 6) and retention force (n = 6) were measured immediately after storage in distilled water at 37 °C for 24 h, as well as after an additional exposure to artificial aging in a chewing simulator and simultaneous thermal cycling. For the measurement of the fracture load, monolithic crowns made of the employed restorative materials and identical in shape to the hybrid crowns served as controls (n = 6 each). Fracture load values for feldspar ceramic and lithium-disilicate hybrid crowns were slightly higher than those for the respective monolithic crowns at baseline and after aging, which was statistically significant only for feldspar crowns after aging. In contrast, fracture load values for zirconia monolithic crowns were higher than those for zirconia hybrid crowns, which was only statistically significant after aging. Artificial aging reduced the fracture load of feldspar and lithium-disilicate crowns both for hybrid and monolithic crowns. The effect was only statistically significant for lithium disilicate hybrid crowns. The fracture load for hybrid and monolithic zirconia crowns was increased by artificial aging without reaching statistical significance. The retention force of lithium-disilicate and zirconia hybrid crowns was not affected by artificial aging. Taking into account retention force and fracture load, lithium-disilicate hybrid crowns showed promising results.

7.
Materials (Basel) ; 16(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36769917

RESUMEN

The aim was to investigate how the surface treatment and the process of accelerated ageing of zirconia for dental implants affect the biaxial flexural strength and hardness. Zirconia discs with a diameter of 12.6 mm were subjected to either one of the following treatments: polishing (Zp); polishing and heat treatment at 1250 °C for 1 h (Zpt); machining (Zm); machining and heat treatment (Zmt); or sandblasting, acid-etching, and heat treatment (Z14) (n = 45 per group). Biaxial flexural strength and Martens hardness (HM) were measured without further treatment and after accelerated ageing for 5 h or 5 × 5 h according to ISO 13356 (n = 15 per group). Two-way ANOVA was applied to test the effect of surface treatment and ageing (α = 0.05). The reliability of the specimens was described with Weibull two-parameter distribution of biaxial flexural strength data. Overall, the surface treatment (p < 0.001) and ageing (p = 0.012) revealed a significant effect on biaxial flexural strength values, while HM was only affected by the surface treatment (p < 0.001) but not ageing (p = 0.160). Surface treatment significantly affected HM (p < 0.001) but not ageing (p = 0.160). The applied surface treatments affected the biaxial flexural strength and HM of zirconia. For accelerated ageing, a duration of both 5 h and 5 × 5 h is recommended to evaluate the effect of surface treatments. Zm was the most reliable surface as it was least affected by ageing and provided low standard deviations of biaxial flexural strength values.

8.
Materials (Basel) ; 16(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36769968

RESUMEN

The aim of this in vitro study was to investigate the effect of hydrogen peroxide (H2O2) on the surface properties of various zirconia-based dental implant materials and the response of human alveolar bone osteoblasts. For this purpose, discs of two zirconia-based materials with smooth and roughened surfaces were immersed in 20% H2O2 for two hours. Scanning electron and atomic force microscopy showed no topographic changes after H2O2-treatment. Contact angle measurements (1), X-ray photoelectron spectroscopy (2) and X-ray diffraction (3) indicated that H2O2-treated surfaces (1) increased in hydrophilicity (p < 0.05) and (2) on three surfaces the carbon content decreased (33-60%), while (3) the monoclinic phase increased on all surfaces. Immunofluorescence analysis of the cell area and DNA-quantification and alkaline phosphatase activity revealed no effect of H2O2-treatment on cell behavior. Proliferation activity was significantly higher on three of the four untreated surfaces, especially on the smooth surfaces (p < 0.05). Within the limitations of this study, it can be concluded that exposure of zirconia surfaces to 20% H2O2 for 2 h increases the wettability of the surfaces, but also seems to increase the monoclinic phase, especially on roughened surfaces, which can be considered detrimental to material stability. Moreover, the H2O2-treatment has no influence on osteoblast behavior.

9.
J Prosthet Dent ; 129(6): 939-945, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34598769

RESUMEN

STATEMENT OF PROBLEM: Occlusal devices can be either conventionally processed, milled, or printed. However, little is known about the biocompatibility of 3D printing resin materials. PURPOSE: The purpose of this in vitro study was to compare the viability and morphology of human gingival fibroblast cells (HFG-1) after cultivation on conventionally processed, milled, and printed occlusal device materials with different surface treatments. MATERIAL AND METHODS: Disks of a conventionally processed (PalaXpress Clear [pP]), milled (Yamahachi PMMA Clear [sY]), and 2 different printed materials (Dental LT Clear Resin [aD]; Freeprint splint [aF]) were prepared. The surfaces of the specimens were finished by using 2 different treatments (unpolished and polished with P1200-grit silicon carbide paper). HGF-1 cells were cultivated on the specimens for 24 hours, and a viability assay was performed by using polystyrene disks as a control (n=9 disks per group). Cell morphology and the topography of the specimens were examined with scanning electron microscopy (n=3 disks per group). Two-way analysis of variance was applied to determine the effect of material and surface treatment followed by the post hoc Fisher least significant difference test (α=.05). RESULTS: Overall, material (P<.001) and surface treatment (P<.001) significantly influenced the viability of HGF-1 cells. The viability of cells on all specimens displayed mean values between 0.85 and 1.01 compared with the control except for unpolished aD (0.00 ±0.07) and aF (0.02 ±0.05) that had only a few cells with a round shape. CONCLUSIONS: The behavior of HGF-1 cells on conventionally processed and milled specimens was similar and not dependent on the surface treatment. Unpolished printed specimens had a cytotoxic effect. However, after polishing, cell behavior was similar to that of the conventionally processed and milled specimens.


Asunto(s)
Materiales Dentales , Impresión Tridimensional , Humanos , Ensayo de Materiales , Fibroblastos , Propiedades de Superficie
10.
Front Physiol ; 13: 1036945, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388122

RESUMEN

The incidence of heart failure after myocardial infarction (MI) remains high and the underlying causes are incompletely understood. The crosstalk between heart and adipose tissue and stimulated lipolysis has been identified as potential driver of heart failure. Lipolysis is also activated acutely in response to MI. However, the role in the post-ischemic remodeling process and the contribution of different depots of adipose tissue is unclear. Here, we employ a mouse model of 60 min cardiac ischemia and reperfusion (I/R) to monitor morphology, cellular infiltrates and gene expression of visceral and subcutaneous white adipose tissue depots (VAT and SAT) for up to 28 days post ischemia. We found that in SAT but not VAT, adipocyte size gradually decreased over the course of reperfusion and that these changes were associated with upregulation of UCP1 protein, indicating white adipocyte conversion to the so-called 'brown-in-white' phenotype. While this phenomenon is generally associated with beneficial metabolic consequences, its role in the context of MI is unknown. We further measured decreased lipogenesis in SAT together with enhanced infiltration of MAC-2+ macrophages. Finally, quantitative PCR analysis revealed transient downregulation of the adipokines adiponectin, leptin and resistin in SAT. While adiponectin and leptin have been shown to be cardioprotective, the role of resistin after MI needs further investigation. Importantly, all significant changes were identified in SAT, while VAT was largely unaffected by MI. We conclude that targeted interference with lipolysis in SAT may be a promising approach to promote cardiac healing after ischemia.

11.
Cells ; 11(21)2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36359896

RESUMEN

BACKGROUND: Platelets are major players of thrombosis and inflammation after acute myocardial infarction (AMI). The impact of thrombocytopenia on platelet-induced cellular processes post AMI is not well defined. METHODS: The left anterior descending artery was ligated in C57/Bl6 mice and in two thrombocytopenic mouse models to induce AMI. RESULTS: Platelets from STEMI patients and from C57/Bl6 mice displayed enhanced platelet activation after AMI. This allows platelets to migrate into the infarct but not into the remote zone of the left ventricle. Acute thrombocytopenia by antibody-induced platelet depletion resulted in reduced infarct size and improved cardiac function 24 h and 21 days post AMI. This was due to reduced platelet-mediated inflammation after 24 h and reduced scar formation after 21 days post AMI. The collagen composition and interstitial collagen content in the left ventricle were altered due to platelet interaction with cardiac fibroblasts. Acute inflammation was also significantly reduced in Mpl-/- mice with chronic thrombocytopenia, but cardiac remodeling was unaltered. Consequently, left ventricular function, infarct size and scar formation in Mpl-/- mice were comparable to controls. CONCLUSION: This study discovers a novel role for platelets in cardiac remodeling and reveals that acute but not chronic thrombocytopenia protects left ventricular function post AMI.


Asunto(s)
Infarto del Miocardio , Trombocitopenia , Disfunción Ventricular Izquierda , Ratones , Animales , Remodelación Ventricular , Cicatriz/patología , Infarto del Miocardio/complicaciones , Colágeno , Trombocitopenia/complicaciones , Inflamación
12.
Basic Res Cardiol ; 117(1): 48, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36205817

RESUMEN

Although p38 MAP Kinase α (p38 MAPKα) is generally accepted to play a central role in the cardiac stress response, to date its function in maladaptive cardiac hypertrophy is still not unambiguously defined. To induce a pathological type of cardiac hypertrophy we infused angiotensin II (AngII) for 2 days via osmotic mini pumps in control and tamoxifen-inducible, cardiomyocyte (CM)-specific p38 MAPKα KO mice (iCMp38αKO) and assessed cardiac function by echocardiography, complemented by transcriptomic, histological, and immune cell analysis. AngII treatment after inactivation of p38 MAPKα in CM results in left ventricular (LV) dilatation within 48 h (EDV: BL: 83.8 ± 22.5 µl, 48 h AngII: 109.7 ± 14.6 µl) and an ectopic lipid deposition in cardiomyocytes, reflecting a metabolic dysfunction in pressure overload (PO). This was accompanied by a concerted downregulation of transcripts for oxidative phosphorylation, TCA cycle, and fatty acid metabolism. Cardiac inflammation involving neutrophils, macrophages, B- and T-cells was significantly enhanced. Inhibition of adipose tissue lipolysis by the small molecule inhibitor of adipocytetriglyceride lipase (ATGL) Atglistatin reduced cardiac lipid accumulation by 70% and neutrophil infiltration by 30% and went along with an improved cardiac function. Direct targeting of neutrophils by means of anti Ly6G-antibody administration in vivo led to a reduced LV dilation in iCMp38αKO mice and an improved systolic function (EF: 39.27 ± 14%). Thus, adipose tissue lipolysis and CM lipid accumulation augmented cardiac inflammation in iCMp38αKO mice. Neutrophils, in particular, triggered the rapid left ventricular dilatation. We provide the first evidence that p38 MAPKα acts as an essential switch in cardiac adaptation to PO by mitigating metabolic dysfunction and inflammation. Moreover, we identified a heart-adipose tissue-immune cell crosstalk, which might serve as new therapeutic target in cardiac pathologies.


Asunto(s)
Insuficiencia Cardíaca , Miocitos Cardíacos , Tejido Adiposo/metabolismo , Angiotensina II/metabolismo , Animales , Cardiomegalia/metabolismo , Ácidos Grasos/metabolismo , Inflamación/metabolismo , Lipasa/metabolismo , Lipasa/uso terapéutico , Lípidos/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Neutrófilos/metabolismo , Tamoxifeno/metabolismo , Tamoxifeno/uso terapéutico , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/uso terapéutico
13.
Matrix Biol ; 112: 116-131, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35998871

RESUMEN

Dysregulated extracellular matrix (ECM) is a hallmark of adverse cardiac remodeling after myocardial infarction (MI). Previous work from our laboratory suggests that synthesis of the major ECM component hyaluronan (HA) may be beneficial for post-infarct healing. Here, we aimed to investigate the mechanisms of hyaluronan synthase 3 (HAS3) in cardiac healing after MI. Mice with genetic deletion of Has3 (Has3 KO) and wildtype mice (WT) underwent 45 min of ischemia with subsequent reperfusion (I/R), followed by monitoring of heart function and analysis of tissue remodeling for up to three weeks. Has3 KO mice exhibited impaired cardiac function as evidenced by a reduced ejection fraction. Accordingly, Has3 deficiency also resulted in an increased scar size. Cardiac fibroblast activation and CD68+ macrophage counts were similar between genotypes. However, we found a significant decrease in CD4 T cells in the hearts of Has3 KO mice seven days post-MI, in particular reduced numbers of CD4+CXCR3+ Th1 and CD4+CD25+Treg cells. Furthermore, Has3 deficient cardiac T cells were less activated and more apoptotic as shown by decreased CD69+ and increased annexin V+ cells, respectively. In vitro assays using activated splenic CD3 T cells demonstrated that Has3 deficiency resulted in reduced expression of the main HA receptor CD44 and diminished T cell proliferation. T cell transendothelial migration was similar between genotypes. Of note, analysis of peripheral blood from patients with ST-elevation myocardial infarction (STEMI) revealed that HAS3 is the predominant HAS isoenzyme also in human T cells. In conclusion, our data suggest that HAS3 is required for mounting a physiological T cell response after MI to support cardiac healing. Therefore, our study may serve as a foundation for the development of novel strategies targeting HA-matrix to preserve T cell function after MI.


Asunto(s)
Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Animales , Anexina A5 , Humanos , Hialuronano Sintasas/genética , Hialuronano Sintasas/metabolismo , Ácido Hialurónico/metabolismo , Isoenzimas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/genética , Reperfusión , Remodelación Ventricular
14.
J Mater Sci Mater Med ; 33(8): 61, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35849225

RESUMEN

Bone graft materials are applied in patients to augment bone defects and enable the insertion of an implant in its ideal position. However, the currently available augmentation materials do not meet the requirements of being completely resorbed and replaced by new bone within 3 to 6 months. A novel electrospun cotton-wool like material (Bonewool®, Zurich Biomaterials LLC, Zurich, Switzerland) consisting of biodegradable poly(lactic-co-glycolic) acid (PLGA) fibers with incorporated amorphous ß-tricalcium phosphate (ß-TCP) nanoparticles has been compared to a frequently used bovine derived hydroxyapatite (Bio-Oss®, Geistlich Pharma, Wolhusen, Switzerland) in vitro. The material composition was determined and the degradation behavior (calcium release and pH in different solutions) as well as bioactivity has been measured. Degradation behavior of PLGA/ß-TCP was generally more progressive than for Bio-Oss®, indicating that this material is potentially completely resorbable. Graphical abstract.


Asunto(s)
Sustitutos de Huesos , Fosfatos de Calcio , Animales , Materiales Biocompatibles/química , Fosfatos de Calcio/química , Bovinos , Humanos
15.
Materials (Basel) ; 15(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35629692

RESUMEN

BACKGROUND: The purpose of this review was to analyze and correlate the findings for zirconia implants in clinical, preclinical and in vitro cell studies in relation to surface structure. METHODS: Electronic searches were conducted to identify clinical, preclinical and in vitro cell studies on zirconia implant surfaces. The primary outcomes were mean bone loss (MBL) for clinical studies, bone-to-implant contact (BIC) and removal torque (RT) for preclinical studies and cell spreading, cell proliferation and gene expression for cell studies. The secondary outcomes included comparisons of data found for those surfaces that were investigated in all three study types. RESULTS: From 986 screened titles, 40 studies were included for data extraction. In clinical studies, only micro-structured surfaces were investigated. The lowest MBL was reported for sandblasted and subsequently etched surfaces, followed by a sinter and slurry treatment and sandblasted surfaces. For BIC, no clear preference of one surface structure was observable, while RT was slightly higher for micro-structured than smooth surfaces. All cell studies showed that cell spreading and cytoskeletal formation were enhanced on smooth compared with micro-structured surfaces. CONCLUSIONS: No correlation was observed for the effect of surface structure of zirconia implants within the results of clinical, preclinical and in vitro cell studies, underlining the need for standardized procedures for human, animal and in vitro studies.

17.
J Esthet Restor Dent ; 34(5): 833-842, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35305288

RESUMEN

OBJECTIVE: The purpose of this study is to compare the bonding performance and mechanical properties of two different resin composite cements using simplified adhesive bonding strategies. MATERIALS AND METHODS: Shear bond strength of two resin composite cements (an adhesive cement: Panavia V5 [PV5] and a self-adhesive cement: RelyX Universal [RUV]) to human enamel, dentin, and a variety of restorative materials (microfilled composite, composite, polymer-infiltrated ceramic, feldspar ceramic, lithium disilicate and zirconia) was measured. Thermocycle aging was performed with selected material combinations. RESULTS: For both cements, the highest shear bond strength to dentin was achieved when using a primer (PV5: 18.0 ± 4.2 MPa, RUV: 18.2 ± 3.3 MPa). Additional etching of dentin reduced bond strength for RUV (12.5 ± 4.9 MPa). On enamel, PV5 achieved the highest bond strength when the primer was used (18.0 ± 3.1 MPa), while for RUV etching of enamel and priming provided best results (21.2 ± 6.6 MPa). Shear bond strength of RUV to restorative materials was superior to PV5. Bonding to resin-based materials was predominantly observed for RUV. CONCLUSIONS: While use of RUV with the selective-etch technique is slightly more labor intensive than PV5, RUV (with its universal primer) displayed a high-bonding potential to all tested restorative materials, especially to resin. CLINICAL SIGNIFICANCE: For a strong adhesion to the tooth substrate, PV5 (with its tooth primer) is to be preferred because etching with phosphoric acid is not required. However, when using a wide range of varying restorative materials, RUV with its universal primer seems to be an adequate option.


Asunto(s)
Recubrimiento Dental Adhesivo , Cerámica , Recubrimiento Dental Adhesivo/métodos , Cementos Dentales , Materiales Dentales , Análisis del Estrés Dental , Humanos , Ensayo de Materiales , Cementos de Resina/química , Resistencia al Corte , Propiedades de Superficie
18.
Clin Oral Implants Res ; 33(4): 424-432, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35137461

RESUMEN

OBJECTIVES: To determine whether the surface treatment of zirconia affects biofilm formation in an in vitro three-species biofilm model and in situ. MATERIAL AND METHODS: Zirconia surfaces considered for the transmucosal portion of a zirconia implant were compared with polished pure titanium grade 4 (Tp). Disks 13 mm in diameter of either polished (Zp), polished and heat-treated (Zpt), machined (Zm), machined and heat-treated (Zmt) and sandblasted, etched and heat-treated (Z14) zirconia were fabricated. Surface roughness and wettability of specimens was measured. Biofilm formation was evaluated by safranin staining and scanning electron microscopy (SEM) using a three-species model, and intraorally with 16 volunteers carrying oral splints in two independent experiments. Relative biofilm formation was compared with Kruskal-Wallis followed by Bonferroni post hoc test (α = 0.05). RESULTS: In vitro biofilm formation with optical density values on Zp (0.14 ± 0.01), Zpt (0.14 ± 0.02), Zm (0.13 ± 0.01) and Zmt (0.13 ± 0.01) was significantly lower than on Tp (0.21 ± 0.05) and Z14 (0.20 ± 0.04) (p < .05). In situ biofilm formation was significantly higher on Z14 (0.56 ± 0.45) (p < .05), while no significant differences in optical density were observed among Zp (0.25 ± 0.20), Zm (0.36 ± 0.34) and Tp (0.28 ± 0.22). SEM analysis supported quantitative findings. CONCLUSIONS: In the in vitro, three-species biofilm model differences in material and surface roughness affected biofilm formation. In situ biofilm formation was mainly affected by the surface roughness of the specimens. Polishing of zirconia is recommended to reduce biofilm formation, while heat treatment has no significant effect.


Asunto(s)
Implantes Dentales , Biopelículas , Humanos , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Propiedades de Superficie , Titanio , Circonio
19.
iScience ; 25(2): 103746, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35118359

RESUMEN

Monoclonal IgG antibodies are the fastest growing class of biologics, but large differences exist in their plasma half-life in humans. Thus, to design IgG antibodies with favorable pharmacokinetics, it is crucial to identify the determinants of such differences. Here, we demonstrate that the variable region sequences of IgG antibodies greatly affect cellular uptake and subsequent recycling and rescue from intracellular degradation by endothelial cells. When the variable sequences are masked by the cognate antigen, it influences both their transport behavior and binding to the neonatal Fc receptor (FcRn), a key regulator of IgG plasma half-life. Furthermore, we show how charge patch differences in the variable domains modulate both binding and transport properties and that a short plasma half-life, due to unfavorable charge patches, may partly be overcome by Fc-engineering for improved FcRn binding.

20.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34830059

RESUMEN

BACKGROUND: Vascular injury induces the exposure of subendothelial extracellular matrix (ECM) important to serve as substrate for platelets to adhere to the injured vessel wall to avoid massive blood loss. Different ECM proteins are known to initiate platelet adhesion and activation. In atherosclerotic mice, the small, leucine-rich proteoglycan biglycan is important for the regulation of thrombin activity via heparin cofactor II. However, nothing is known about the role of biglycan for hemostasis and thrombosis under nonatherosclerotic conditions. METHODS: The role of biglycan for platelet adhesion and thrombus formation was investigated using a recombinant protein and biglycan knockout mice. RESULTS: The present study identified biglycan as important ECM protein for the adhesion and activation of platelets, and the formation of three-dimensional thrombi under flow conditions. Platelet adhesion to immobilized biglycan induces the reorganization of the platelet cytoskeleton. Mechanistically, biglycan binds and activates the major collagen receptor glycoprotein (GP)VI, because reduced platelet adhesion to recombinant biglycan was observed when GPVI was blocked and enhanced tyrosine phosphorylation in a GPVI-dependent manner was observed when platelets were stimulated with biglycan. In vivo, the deficiency of biglycan resulted in reduced platelet adhesion to the injured carotid artery and prolonged bleeding times. CONCLUSIONS: Loss of biglycan in the vessel wall of mice but not in platelets led to reduced platelet adhesion at the injured carotid artery and prolonged bleeding times, suggesting a crucial role for biglycan as ECM protein that binds and activates platelets via GPVI upon vessel injury.


Asunto(s)
Biglicano/genética , Biglicano/metabolismo , Adhesividad Plaquetaria/fisiología , Glicoproteínas de Membrana Plaquetaria/metabolismo , Trombosis/metabolismo , Animales , Plaquetas/metabolismo , Plaquetas/patología , Arterias Carótidas/metabolismo , Traumatismos de las Arterias Carótidas/metabolismo , Colágeno/metabolismo , Citoesqueleto/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Voluntarios Sanos , Hemorragia/genética , Hemorragia/metabolismo , Humanos , Integrinas/metabolismo , Masculino , Ratones Endogámicos C57BL , Activación Plaquetaria/fisiología , Adhesividad Plaquetaria/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...