Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Data Brief ; 30: 105471, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32322620

RESUMEN

Airfoil tip vortex formation noise is a significant noise source in many aerodynamic applications such as aircraft, fans, rotors and propellers. The data collection presented in this paper examines the effects of sinusoidal geometry and porosity on the tip vortex formation noise produced by finite length airfoils. The use of serrated and porous materials is inspired by silent owl-wings and is a promising approach to control flow-induced noise. Noise measurements have been taken using a 47-channel planar microphone array in the anechoic wind tunnel at the Brandenburg University of Technology. Over 2600 unique test cases with variations in sinusoidal tip geometry (amplitude and wavelength) and flat tip porosity were measured during the experimental campaign for a NACA0012 and NACA614 airfoil. The microphone data have been processed using acoustic beamforming software named Acoular to produce one-third-octave band tip noise spectra.

2.
Data Brief ; 28: 105058, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31938721

RESUMEN

The vortex generated at the tip of an airfoil such as an aircraft wing, wind turbine blade, submarine fin or propeller blade can dominate its wake and be a significant source of unwanted noise. The data collection presented in this paper consists of measurements of tip vortex formation noise produced by finite length airfoils with flat and rounded tips. These data were obtained using the specialist aeroacoustic test facilities at the Brandenburg University of Technology (BTU) in Cottbus, Germany and a 47-channel planar microphone array. Over 1200 unique test cases with variations in airfoil profile shape, tip geometry, angle of attack and Reynolds number were measured during the experimental campaign. The dataset contains one-third-octave band tip noise spectra that have been processed using Acoular, a Python module for acoustic beamforming.

3.
J Acoust Soc Am ; 141(5): 3291, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28599535

RESUMEN

Trailing edge noise from stationary and rotating NACA 0012 airfoils is characterised and compared with a noise prediction based on the semi-empirical Brooks, Pope, and Marcolini (BPM) model. The NACA 0012 is symmetrical airfoil with no camber and 12% thickness to chord length ratio. Acoustic measurements were conducted in an anechoic wind tunnel using a stationary NACA 0012 airfoil at 0° pitch angle. Airfoil self-noise emissions from rotating NACA 0012 airfoils mounted at 0° and 10° pitch angles on a rotor-rig are studied in an anechoic room. The measurements were carried out using microphone arrays for noise localisation and magnitude estimation using beamforming post-processing. Results show good agreement between peak radiating trailing edge noise emissions of stationary and rotating NACA 0012 airfoils in terms of the Strouhal number. Furthermore, it is shown that noise predictions based on the BPM model considering only two dimensional flow effects, are in good agreement with measurements for rotating airfoils, at these particular conditions.

4.
J Acoust Soc Am ; 136(5): 2675-86, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25373968

RESUMEN

This study focuses on the identification of intermittent aeroacoustic sources in flows by using the time-domain beamforming technique. It is first shown that this technique can be seen as a time-reversal (TR) technique, working with approximate Green functions in the case of a shear flow. Some numerical experiments investigate the case of an array measurement of a generic acoustic pulse emitted in a wind-tunnel flow, with a realistic multi-arm spiral array. The results of the time-domain beamforming successfully match those given by a numerical TR technique over a wide range of flow speeds (reaching the transonic regime). It is shown how the results should be analyzed in a focusing plane parallel to the microphone array in order to estimate the location and emission time of the pulse source. An experimental application dealing with the aeroacoustic radiation of a bluff body in a wind-tunnel flow is also considered, and shows that some intermittent events can be clearly identified in the noise radiation. Time-domain beamforming is then an efficient tool for analyzing intermittent acoustic sources in flows, and is a computationally cheaper alternative to the numerical TR technique, which should be used for complex configurations where the Green function is not available.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA