Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Crohns Colitis 360 ; 6(1): otae003, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38352118

RESUMEN

Background: Formylated peptide receptor (FPR)-1 is a G-coupled receptor that senses foreign bacterial and host-derived mitochondrial formylated peptides (FPs), leading to innate immune system activation. Aim: We sought to investigate the role of FPR1-mediated inflammation and its potential as a therapeutic target in inflammatory bowel disease (IBD). Methods: We characterized FPR1 gene and protein expression in 8 human IBD (~1000 patients) datasets with analysis on disease subtype, mucosal inflammation, and drug response. We performed in vivo dextran-sulfate sodium (DSS) colitis in C57/BL6 FPR1 knockout mice. In ex vivo studies, we studied the role of mitochondrial FPs and pharmacological blockade of FPR1 using cyclosporin H in human peripheral blood neutrophils. Finally, we assess mitochondrial FPs as a potential mechanistic biomarker in the blood and stools of patients with IBD. Results: Detailed in silico analysis in human intestinal biopsies showed that FPR1 is highly expressed in IBD (n = 207 IBD vs 67 non-IBD controls, P < .001), and highly correlated with gut inflammation in ulcerative colitis (UC) and Crohn's disease (CD) (both P < .001). FPR1 receptor is predominantly expressed in leukocytes, and we showed significantly higher FPR1+ve neutrophils in inflamed gut tissue section in IBD (17 CD and 24 UC; both P < .001). Further analysis in 6 independent IBD (data available under Gene Expression Omnibus accession numbers GSE59071, GSE206285, GSE73661, GSE16879, GSE92415, and GSE235970) showed an association with active gut inflammation and treatment resistance to infliximab, ustekinumab, and vedolizumab. FPR1 gene deletion is protective in murine DSS colitis with lower gut neutrophil inflammation. In the human ex vivo neutrophil system, mitochondrial FP, nicotinamide adenine dinucleotide dehydrogenase subunit-6 (ND6) is a potent activator of neutrophils resulting in higher CD62L shedding, CD63 expression, reactive oxygen species production, and chemotactic capacity; these effects are inhibited by cyclosporin H. We screened for mitochondrial ND6 in IBD (n = 54) using ELISA and detected ND6 in stools with median values of 2.2 gg/mL (interquartile range [IQR] 0.0-4.99; range 0-53.3) but not in blood. Stool ND6 levels, however, were not significantly correlated with paired stool calprotectin, C-reactive protein, and clinical IBD activity. Conclusions: Our data suggest that FPR1-mediated neutrophilic inflammation is a tractable target in IBD; however, further work is required to clarify the clinical utility of mitochondrial FPs as a potential mechanistic marker for future stratification.

3.
Eur J Nutr ; 63(2): 573-587, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38141138

RESUMEN

PURPOSE: The Swiss voluntary salt iodisation programme has successfully prevented iodine deficiency for 100 years, but dietary habits are changing and today only one-third of processed foods contain iodised salt. We aimed to monitor the current iodine status in children and pregnant women. METHODS: We conducted a nationwide cross-sectional study in children (6-12 years) and pregnant women and measured the urinary iodine concentration (UIC) in spot urine samples. We estimated the iodine intake using UIC and urinary creatinine concentration (UCC) and determined the prevalence of intakes below the average requirement (AR) using the SPADE method. We measured dried blood spot (DBS) thyroglobulin (Tg), TSH and total T4 in pregnant women. RESULTS: The median UIC was 127 µg/L (bootstrapped 95% CI 119, 140, n = 362) in children and 97 µg/L (bootstrapped 95% CI 90, 106, n = 473) in pregnant women. The estimated prevalence of inadequate iodine intake (< 65 µg/day) was 5.4% (bootstrapped 95% CI 0.0, 14.6) in children. Half (47%) of the women consumed iodine-containing multivitamin and mineral supplements (≥ 150 µg/day). Compared to non-users, users had higher median UIC (129 vs. 81 µg/L, P < 0.001), lower prevalence of inadequacy (< 160 µg/day; 0.2 vs. 31%) and lower DBS-Tg (23 vs. 29 µg/L, P < 0.001). All women were euthyroid. CONCLUSIONS: The Swiss diet and current salt fortification provides adequate iodine intake in children, but not in all pregnant women. Iodine supplements cover the dietary gap in pregnancy but are not universally consumed. Therefore, improved use of iodised salt in processed foods is desired to ensure adequate iodine intake in all population groups. This trial was registered at clinicaltrials.gov as NCT04524013.


Asunto(s)
Yodo , Mujeres Embarazadas , Niño , Humanos , Femenino , Embarazo , Estudios Transversales , Suiza/epidemiología , Yodo/orina , Cloruro de Sodio Dietético , Estado Nutricional , Cloruro de Sodio
4.
Nat Mater ; 22(12): 1548-1555, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37723337

RESUMEN

Aerophilic surfaces immersed underwater trap films of air known as plastrons. Plastrons have typically been considered impractical for underwater engineering applications due to their metastable performance. Here, we describe aerophilic titanium alloy (Ti) surfaces with extended plastron lifetimes that are conserved for months underwater. Long-term stability is achieved by the formation of highly rough hierarchically structured surfaces via electrochemical anodization combined with a low-surface-energy coating produced by a fluorinated surfactant. Aerophilic Ti surfaces drastically reduce blood adhesion and, when submerged in water, prevent adhesion of bacteria and marine organisms such as barnacles and mussels. Overall, we demonstrate a general strategy to achieve the long-term stability of plastrons on aerophilic surfaces for previously unattainable underwater applications.

5.
Fac Rev ; 12: 14, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37346090

RESUMEN

This review examines the role of circulating cell-free DNA (cfDNA) as potential drivers of inflammation and their potential application as mechanistic biomarkers in Inflammatory Bowel Diseases (IBD). These DNA fragments contain significant information about their origins, the underlying host pathology leading to their release, and possess properties that can fuel the inflammatory process. Recent advances in sequencing and analytical approaches have made the translation of cfDNA into clinical practice a promising prospect. We focus on the functional relevance of cfDNA in the inflammatory process and discuss its potential for future assessments of IBD activity and identification of therapeutic options.

6.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37373531

RESUMEN

Signaling-pathway analyses and the investigation of gene responses to different stimuli are usually performed in 2D monocultures. However, within the glomerulus, cells grow in 3D and are involved in direct and paracrine interactions with different glomerular cell types. Thus, the results from 2D monoculture experiments must be taken with caution. We cultured glomerular endothelial cells, podocytes and mesangial cells in 2D/3D monocultures and 2D/3D co-cultures and analyzed cell survival, self-assembly, gene expression, cell-cell interaction, and gene pathways using live/dead assay, time-lapse analysis, bulk-RNA sequencing, qPCR, and immunofluorescence staining. Without any need for scaffolds, 3D glomerular co-cultures self-organized into spheroids. Podocyte- and glomerular endothelial cell-specific markers and the extracellular matrix were increased in 3D co-cultures compared to 2D co-cultures. Housekeeping genes must be chosen wisely, as many genes used for the normalization of gene expression were themselves affected in 3D culture conditions. The transport of podocyte-derived VEGFA to glomerular endothelial cells confirmed intercellular crosstalk in the 3D co-culture models. The enhanced expression of genes important for glomerular function in 3D, compared to 2D, questions the reliability of currently used 2D monocultures. Hence, glomerular 3D co-cultures might be more suitable in the study of intercellular communication, disease modelling and drug screening ex vivo.


Asunto(s)
Técnicas de Cultivo de Célula , Células Endoteliales , Técnicas de Cocultivo , Reproducibilidad de los Resultados , Técnicas de Cultivo de Célula/métodos , Glomérulos Renales
7.
Methods Mol Biol ; 2644: 371-385, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37142935

RESUMEN

One of the most commonly assessed parameters in cellular analyses is the proliferative activity of a cell population. The fluorescence ubiquitin cell cycle indicator (FUCCI)-based system allows live and in vivo observation of cell cycle progression. Based on the mutually exclusive activity of two fluorescently labeled proteins cdt1 and geminin during the G0/1 and S/G2/M phases of the cell cycle, individual cells can be assigned to their respective cell cycle phase by fluorescence imaging of the nucleus. Here, we describe the generation of NIH/3T3 cells containing the FUCCI reporter system by lentiviral transduction and their use in 3D culture assays. The protocol can be adapted to other cell lines.


Asunto(s)
Proteínas de Ciclo Celular , Ubiquitina , Ratones , Animales , Fluorescencia , Genes Reporteros , Ciclo Celular/genética , División Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
9.
Elife ; 112022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36053000

RESUMEN

Numerous cell functions are accompanied by phenotypic changes in viscoelastic properties, and measuring them can help elucidate higher level cellular functions in health and disease. We present a high-throughput, simple and low-cost microfluidic method for quantitatively measuring the elastic (storage) and viscous (loss) modulus of individual cells. Cells are suspended in a high-viscosity fluid and are pumped with high pressure through a 5.8 cm long and 200 µm wide microfluidic channel. The fluid shear stress induces large, ear ellipsoidal cell deformations. In addition, the flow profile in the channel causes the cells to rotate in a tank-treading manner. From the cell deformation and tank treading frequency, we extract the frequency-dependent viscoelastic cell properties based on a theoretical framework developed by R. Roscoe [1] that describes the deformation of a viscoelastic sphere in a viscous fluid under steady laminar flow. We confirm the accuracy of the method using atomic force microscopy-calibrated polyacrylamide beads and cells. Our measurements demonstrate that suspended cells exhibit power-law, soft glassy rheological behavior that is cell-cycle-dependent and mediated by the physical interplay between the actin filament and intermediate filament networks.


Cells in the human body are viscoelastic: they have some of the properties of an elastic solid, like rubber, as well as properties of a viscous fluid, like oil. To carry out mechanical tasks ­ such as, migrating through tissues to heal a wound or to fight inflammation ­ cells need the right balance of viscosity and elasticity. Measuring these two properties can therefore help researchers to understand important cell tasks and how they are impacted by disease. However, quantifying these viscous and elastic properties is tricky, as both depend on the time-scale they are measured: when pressed slowly, cells appear soft and liquid, but they turn hard and thick when rapidly pressed. Here, Gerum et al. have developed a new system for measuring the viscosity and elasticity of individual cells that is fast, simple, and inexpensive. In this new method, cells are suspended in a specialized solution with a consistency similar to machine oil which is then pushed with high pressure through channels less than half a millimeter wide. The resulting flow of fluid shears the cells, causing them to elongate and rotate, which is captured using a fast camera that takes 500 images per second. Gerum et al. then used artificial intelligence to extract each cell's shape and rotation speed from these images, and calculated their viscosity and elasticity based on existing theories of how viscoelastic objects behave in fluids. Gerum et al. also investigated how the elasticity and viscosity of cells changed with higher rotation frequencies, which corresponds to shorter time-scales. This revealed that while higher frequencies made the cells appear more viscous and elastic, the ratio between these two properties remained the same. This means that researchers can compare results obtained from different experimental techniques, even if the measurements were carried out at completely different frequencies or time-scales. The method developed by Gerum et al. provides a fast an inexpensive way for analyzing the viscosity and elasticity of cells. It could also be a useful tool for screening the effects of drugs, or as a diagnostic tool to detect diseases that affect the mechanical properties of cells.


Asunto(s)
Elasticidad , Citometría de Flujo , Reología/métodos , Estrés Mecánico , Viscosidad
10.
Biofabrication ; 14(4)2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35896101

RESUMEN

During bioprinting, cells are suspended in a viscous bioink and extruded under pressure through small diameter printing needles. The combination of high pressure and small needle diameter exposes cells to considerable shear stress, which can lead to cell damage and death. Approaches to monitor and control shear stress-induced cell damage are currently not well established. To visualize the effects of printing-induced shear stress on plasma membrane integrity, we add FM 1-43 to the bioink, a styryl dye that becomes fluorescent when bound to lipid membranes, such as the cellular plasma membrane. Upon plasma membrane disruption, the dye enters the cell and also stains intracellular membranes. Extrusion of alginate-suspended NIH/3T3 cells through a 200µm printing needle led to an increased FM 1-43 incorporation at high pressure, demonstrating that typical shear stresses during bioprinting can transiently damage the plasma membrane. Cell imaging in a microfluidic channel confirmed that FM 1-43 incorporation is caused by cell strain. Notably, high printing pressure also impaired cell survival in bioprinting experiments. Using cell types of different stiffnesses, we find that shear stress-induced cell strain, FM 1-43 incorporation and cell death were reduced in stiffer compared to softer cell types and demonstrate that cell damage and death correlate with shear stress-induced cell deformation. Importantly, supplementation of the suspension medium with physiological concentrations of CaCl2greatly reduced shear stress-induced cell damage and death but not cell deformation. As the sudden influx of calcium ions is known to induce rapid cellular vesicle exocytosis and subsequent actin polymerization in the cell cortex, we hypothesize that calcium supplementation facilitates the rapid resealing of plasma membrane damage sites. We recommend that bioinks should be routinely supplemented with physiological concentrations of calcium ions to reduce shear stress-induced cell damage and death during extrusion bioprinting.


Asunto(s)
Bioimpresión , Alginatos , Animales , Bioimpresión/métodos , Calcio , Suplementos Dietéticos , Ratones , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido
11.
Cell Death Differ ; 29(11): 2218-2232, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35505004

RESUMEN

The bacterium Helicobacter pylori induces gastric inflammation and predisposes to cancer. H. pylori-infected epithelial cells secrete cytokines and chemokines and undergo DNA-damage. We show that the host cell's mitochondrial apoptosis system contributes to cytokine secretion and DNA-damage in the absence of cell death. H. pylori induced secretion of cytokines/chemokines from epithelial cells, dependent on the mitochondrial apoptosis machinery. A signalling step was identified in the release of mitochondrial Smac/DIABLO, which was required for alternative NF-κB-activation and contributed to chemokine secretion. The bacterial cag-pathogenicity island and bacterial muropeptide triggered mitochondrial host cell signals through the pattern recognition receptor NOD1. H. pylori-induced DNA-damage depended on mitochondrial apoptosis signals and the caspase-activated DNAse. In biopsies from H. pylori-positive patients, we observed a correlation of Smac-levels and inflammation. Non-apoptotic cells in these samples showed evidence of caspase-3-activation, correlating with phosphorylation of the DNA-damage response kinase ATM. Thus, H. pylori activates the mitochondrial apoptosis pathway to a sub-lethal level. During infection, Smac has a cytosolic, pro-inflammatory role in the absence of apoptosis. Further, DNA-damage through sub-lethal mitochondrial signals is likely to contribute to mutagenesis and cancer development.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , FN-kappa B/metabolismo , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/patología , Mitocondrias/metabolismo , Células Epiteliales/metabolismo , Quimiocinas/metabolismo , ADN/metabolismo , Inflamación/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiología , Mucosa Gástrica/patología
12.
Cancers (Basel) ; 13(16)2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34439267

RESUMEN

Alginate hydrogels have been used as a biomaterial for 3D culturing for several years. Here, gene expression patterns in melanoma cells cultivated in 3D alginate are compared to 2D cultures. It is well-known that 2D cell culture is not resembling the complex in vivo situation well. However, the use of very intricate 3D models does not allow performing high-throughput screening and analysis is highly complex. 3D cell culture strategies in hydrogels will better mimic the in vivo situation while they maintain feasibility for large-scale analysis. As alginate is an easy-to-use material and due to its favorable properties, it is commonly applied as a bioink component in the growing field of cell encapsulation and biofabrication. Yet, only a little information about the transcriptome in 3D cultures in hydrogels like alginate is available. In this study, changes in the transcriptome based on RNA-Seq data by cultivating melanoma cells in 3D alginate are analyzed and reveal marked changes compared to cells cultured on usual 2D tissue culture plastic. Deregulated genes represent valuable cues to signaling pathways and molecules affected by the culture method. Using this as a model system for tumor cell plasticity and heterogeneity, EGR1 is determined to play an important role in melanoma progression.

13.
Macromol Biosci ; 21(10): e2100122, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34292657

RESUMEN

Hydrogels are key components in bioink formulations to ensure printability and stability in biofabrication. In this study, a well-known Diels-Alder two-step post-polymerization modification approach is introduced into thermogelling diblock copolymers, comprising poly(2-methyl-2-oxazoline) and thermoresponsive poly(2-n-propyl-2-oxazine). The diblock copolymers are partially hydrolyzed and subsequently modified by acid/amine coupling with furan and maleimide moieties. While the thermogelling and shear-thinning properties allow excellent printability, trigger-less cell-friendly Diels-Alder click-chemistry yields long-term shape-fidelity. The introduced platform enables easy incorporation of cell-binding moieties (RGD-peptide) for cellular interaction. The hydrogel is functionalized with RGD-peptides using thiol-maleimide chemistry and cell proliferation as well as morphology of fibroblasts seeded on top of the hydrogels confirm the cell adhesion facilitated by the peptides. Finally, bioink formulations are tested for biocompatibility by incorporating fibroblasts homogenously inside the polymer solution pre-printing. After the printing and crosslinking process good cytocompatibility is confirmed. The established bioink system combines a two-step approach by physical precursor gelation followed by an additional chemical stabilization, offering a broad versatility for further biomechanical adaptation or bioresponsive peptide modification.


Asunto(s)
Bioimpresión , Hidrogeles , Hidrogeles/química , Hidrogeles/farmacología , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido/química
14.
PLoS Comput Biol ; 17(6): e1008364, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34153027

RESUMEN

Cellular force generation and force transmission are of fundamental importance for numerous biological processes and can be studied with the methods of Traction Force Microscopy (TFM) and Monolayer Stress Microscopy. Traction Force Microscopy and Monolayer Stress Microscopy solve the inverse problem of reconstructing cell-matrix tractions and inter- and intra-cellular stresses from the measured cell force-induced deformations of an adhesive substrate with known elasticity. Although several laboratories have developed software for Traction Force Microscopy and Monolayer Stress Microscopy computations, there is currently no software package available that allows non-expert users to perform a full evaluation of such experiments. Here we present pyTFM, a tool to perform Traction Force Microscopy and Monolayer Stress Microscopy on cell patches and cell layers grown in a 2-dimensional environment. pyTFM was optimized for ease-of-use; it is open-source and well documented (hosted at https://pytfm.readthedocs.io/) including usage examples and explanations of the theoretical background. pyTFM can be used as a standalone Python package or as an add-on to the image annotation tool ClickPoints. In combination with the ClickPoints environment, pyTFM allows the user to set all necessary analysis parameters, select regions of interest, examine the input data and intermediary results, and calculate a wide range of parameters describing forces, stresses, and their distribution. In this work, we also thoroughly analyze the accuracy and performance of the Traction Force Microscopy and Monolayer Stress Microscopy algorithms of pyTFM using synthetic and experimental data from epithelial cell patches.


Asunto(s)
Microscopía/métodos , Algoritmos , Fenómenos Físicos
15.
FASEB J ; 35(5): e21572, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33826782

RESUMEN

High uncoupling protein 1 (Ucp1) expression is a characteristic of differentiated brown adipocytes and is linked to adipogenic differentiation. Paracrine fibroblast growth factor 8b (FGF8b) strongly induces Ucp1 transcription in white adipocytes independent of adipogenesis. Here, we report that FGF8b and other paracrine FGFs act on brown and white preadipocytes to upregulate Ucp1 expression via a FGFR1-MEK1/2-ERK1/2 axis, independent of adipogenesis. Transcriptomic analysis revealed an upregulation of prostaglandin biosynthesis and glycolysis upon Fgf8b treatment of preadipocytes. Oxylipin measurement by LC-MS/MS in FGF8b conditioned media identified prostaglandin E2 as a putative mediator of FGF8b induced Ucp1 transcription. RNA interference and pharmacological inhibition of the prostaglandin E2 biosynthetic pathway confirmed that PGE2 is causally involved in the control over Ucp1 transcription. Importantly, impairment of or failure to induce glycolytic flux blunted the induction of Ucp1, even in the presence of PGE2 . Lastly, a screening of transcription factors identified Nrf1 and Hes1 as required regulators of FGF8b induced Ucp1 expression. Thus, we conclude that paracrine FGFs co-regulate prostaglandin and glucose metabolism to induce Ucp1 expression in a Nrf1/Hes1-dependent manner in preadipocytes, revealing a novel regulatory network in control of Ucp1 expression in a formerly unrecognized cell type.


Asunto(s)
Adipocitos Marrones/metabolismo , Adipocitos Blancos/metabolismo , Dinoprostona/metabolismo , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica , Glucólisis , Proteína Desacopladora 1/fisiología , Adipocitos Marrones/citología , Adipocitos Blancos/citología , Adipogénesis , Animales , Células Cultivadas , Factor 8 de Crecimiento de Fibroblastos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
16.
Travel Med Infect Dis ; 36: 101815, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32629138

RESUMEN

BACKGROUND: Malaria is one of the most life-threatening vector-borne diseases globally. Recent autochthonous cases registered in several European countries have raised awareness regarding the threat of malaria reintroduction to Europe. An increasing number of imported malaria cases today occur due to international travel and migrant flows from malaria-endemic countries. The cumulative factors of the presence of competent vectors, favourable climatic conditions and evidence of increasing temperatures might lead to the re-emergence of malaria in countries where the infection was previously eliminated. METHODS: We performed a systematic literature review following PRISMA guidelines. We searched for original articles focusing on rising temperature and the receptivity to malaria transmission in Europe. We evaluated the quality of the selected studies using a standardised tool. RESULTS: The search resulted in 1'999 articles of possible relevance and after screening we included 10 original research papers in the quantitative analysis for the systematic review. With further increasing temperatures studies predicted a northward spread of the occurrence of Anopheles mosquitoes and an extension of seasonality, enabling malaria transmission for annual periods up to 6 months in the years 2051-2080. Highest vector stability and receptivity were predicted in Southern and South-Eastern European areas. Anopheles atroparvus, the main potential malaria vector in Europe, might play an important role under changing conditions favouring malaria transmission. CONCLUSION: The receptivity of Europe for malaria transmission will increase as a result of rising temperature unless socioeconomic factors remain favourable and appropriate public health measures are implemented. Our systematic review serves as an evidence base for future preventive measures.


Asunto(s)
Anopheles , Malaria , Animales , Europa (Continente) , Humanos , Malaria/transmisión , Mosquitos Vectores , Temperatura
17.
Int J Mol Sci ; 21(11)2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32481600

RESUMEN

Hepatocytes are key players in the innate immune response to liver pathogens but are challenging to study because of inaccessibility and a short half-life. Recent advances in in vitro differentiation of hepatocyte-like cells (HLCs) facilitated studies of hepatocyte-pathogen interactions. Here, we aimed to define the anti-viral innate immune potential of human HLCs with a focus on toll-like receptor (TLR)-expression and the presence of a metabolic switch. We analysed cytoplasmic pattern recognition receptor (PRR)- and endosomal TLR-expression and activity and adaptation of HLCs to an inflammatory environment. We found that transcript levels of retinoic acid inducible gene I (RIG-I), melanoma differentiation antigen 5 (MDA5), and TLR3 became downregulated during differentiation, indicating the acquisition of a more tolerogenic phenotype, as expected in healthy hepatocytes. HLCs responded to activation of RIG-I by producing interferons (IFNs) and IFN-stimulated genes. Despite low-level expression of TLR3, receptor expression was upregulated in an inflammatory environment. TLR3 signalling induced expression of proinflammatory cytokines at the gene level, indicating that several PRRs need to interact for successful innate immune activation. The inflammatory responsiveness of HLCs was accompanied by the downregulation of cytochrome P450 3A and 1A2 activity and decreased serum protein production, showing that the metabolic switch seen in primary hepatocytes during anti-viral responses is also present in HLCs.


Asunto(s)
Hepatocitos/inmunología , Inmunidad Innata , Receptores de Reconocimiento de Patrones/metabolismo , Receptores Virales/inmunología , Antivirales/farmacología , Diferenciación Celular , Citoplasma/metabolismo , Células Madre Embrionarias/metabolismo , Endosomas/metabolismo , Hepatocitos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Inflamación , Quinasas Janus/metabolismo , Ligandos , Microscopía Fluorescente , Receptores Virales/metabolismo , Transducción de Señal/inmunología , Receptores Toll-Like/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba
18.
J Vis Exp ; (149)2019 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-31380852

RESUMEN

The development of renewable sources of liver tissue is required to improve cell-based modelling, and develop human tissue for transplantation. Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) represent promising sources of human liver spheres. We have developed a serum free and defined method of cellular differentiation to generate three-dimensional human liver spheres formed from human pluripotent stem cells. A potential limitation of the technology is the production of dense spheres with dead material inside. In order to circumvent this, we have employed agarose microwell technology at defined cell densities to control the size of the 3D spheres, preventing the generation of apoptotic and/or necrotic cores.  Notably, the spheres generated by our approach display liver function and stable phenotype, representing a valuable resource for basic and applied scientific research. We believe that our approach could be used as a platform technology to develop further tissues to model and treat human disease and in the future may permit the generation of human tissue with complex tissue architecture.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Hígado/citología , Células Madre Pluripotentes/fisiología , Recuento de Células , Diferenciación Celular , Medio de Cultivo Libre de Suero , Humanos , Esferoides Celulares
19.
J Exp Med ; 216(2): 267-278, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30635357

RESUMEN

Heterozygous loss-of-function mutations of TANK-binding kinase 1 (TBK1 ) cause familial ALS, yet downstream mechanisms of TBK1 mutations remained elusive. TBK1 is a pleiotropic kinase involved in the regulation of selective autophagy and inflammation. We show that heterozygous Tbk1 deletion alone does not lead to signs of motoneuron degeneration or disturbed autophagy in mice during a 200-d observation period. Surprisingly, however, hemizygous deletion of Tbk1 inversely modulates early and late disease phases in mice additionally overexpressing ALS-linked SOD1G93A , which represents a "second hit" that induces both neuroinflammation and proteostatic dysregulation. At the early stage, heterozygous Tbk1 deletion impairs autophagy in motoneurons and prepones both the clinical onset and muscular denervation in SOD1G93A/Tbk1+/- mice. At the late disease stage, however, it significantly alleviates microglial neuroinflammation, decelerates disease progression, and extends survival. Our results indicate a profound effect of TBK1 on brain inflammatory cells under pro-inflammatory conditions and point to a complex, two-edged role of TBK1 in SOD1-linked ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Encéfalo , Eliminación de Gen , Neuronas Motoras , Proteínas Serina-Treonina Quinasas , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Muerte Celular Autofágica/genética , Encéfalo/metabolismo , Encéfalo/patología , Mutación con Pérdida de Función , Ratones , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-29786555

RESUMEN

Stem cell-derived hepatocyte-like cells (HLCs) offer great opportunities for studies of host-pathogen interactions and tissue regeneration, as well as hepatotoxicity. To reliably predict the outcome of infection or to enhance graft survival, a finely tuned innate immune system is essential. Hepatocytes have long been considered solely metabolic and their critical innate immune potential is only recently gaining attention. Viral infection studies show that pathogen detection by cytosolic receptors leads to interferon (IFN) induction in primary hepatocytes and HLCs. IFN expression in HLCs is characterized by strong expression of type III IFN and low expression of type I IFN which is also a characteristic of primary hepatocytes. The response to IFN differs in HLCs with lower interferon-stimulated gene (ISG)-expression levels than in primary hepatocytes. Tumour necrosis factor-alpha (TNF-α) signalling is less studied in HLCs, but appears to be functional. Expression of toll-like receptors (TLR) 2-5, 7 and 9 has been reported in primary hepatocytes but has been poorly studied in HLCs. In summary, although they retain some immature features, HLCs are in many ways superior to hepatoma cell lines for cell-based modelling. In this review, we will provide an overview of innate immune signalling in HLCs and how this compares with primary hepatocytes.This article is part of the themed issue 'Designer human tissue: coming to a lab near you'.


Asunto(s)
Hepatocitos/inmunología , Inmunidad Innata/fisiología , Células Madre Pluripotentes Inducidas/inmunología , Transducción de Señal , Interacciones Huésped-Patógeno , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...