Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38712159

RESUMEN

The phylum Preplasmiviricota (kingdom Bamfordvirae, realm Varidnaviria) is a broad assemblage of diverse viruses with comparatively short double-stranded DNA genomes (<50 kbp) that produce icosahedral capsids built from double jelly-roll major capsid proteins. Preplasmiviricots infect hosts from all cellular domains, testifying to their ancient origin and, in particular, are associated with six of the seven supergroups of eukaryotes. Preplasmiviricots comprise four major groups of viruses, namely, polintons, polinton-like viruses (PLVs), virophages, and adenovirids. We employed protein structure modeling and analysis to show that protein-primed DNA polymerases (pPolBs) of polintons, virophages, and cytoplasmic linear plasmids encompass an N-terminal domain homologous to the terminal proteins (TPs) of prokaryotic PRD1-like tectivirids and eukaryotic adenovirids that are involved in protein-primed replication initiation, followed by a viral ovarian tumor-like cysteine deubiquitinylase (vOTU) domain. The vOTU domain is likely responsible for the cleavage of the TP from the large pPolB polypeptide and is inactivated in adenovirids, in which TP is a separate protein. Many PLVs and transpovirons encode a distinct derivative of polinton-like pPolB that retains the TP, vOTU and pPolB polymerization palm domains but lacks the exonuclease domain and instead contains a supefamily 1 helicase domain. Analysis of the presence/absence and inactivation of the vOTU domains, and replacement of pPolB with other DNA polymerases in eukaryotic preplasmiviricots enabled us to outline a complete scenario for their origin and evolution.

2.
Proc Natl Acad Sci U S A ; 121(23): e2405771121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805295

RESUMEN

The phylum Preplasmiviricota (kingdom Bamfordvirae, realm Varidnaviria) is a broad assemblage of diverse viruses with comparatively short double-stranded DNA genomes (<50 kbp) that produce icosahedral capsids built from double jelly-roll major capsid proteins. Preplasmiviricots infect hosts from all cellular domains, testifying to their ancient origin, and, in particular, are associated with six of the seven supergroups of eukaryotes. Preplasmiviricots comprise four major groups of viruses, namely, polintons, polinton-like viruses (PLVs), virophages, and adenovirids. We used protein structure modeling and analysis to show that protein-primed DNA polymerases (pPolBs) of polintons, virophages, and cytoplasmic linear plasmids encompass an N-terminal domain homologous to the terminal proteins (TPs) of prokaryotic PRD1-like tectivirids and eukaryotic adenovirids that are involved in protein-primed replication initiation, followed by a viral ovarian tumor-like cysteine deubiquitinylase (vOTU) domain. The vOTU domain is likely responsible for the cleavage of the TP from the large pPolB polypeptide and is inactivated in adenovirids, in which TP is a separate protein. Many PLVs and transpovirons encode a distinct derivative of polinton-like pPolB that retains the TP, vOTU, and pPolB polymerization palm domains but lacks the exonuclease domain and instead contains a superfamily 1 helicase domain. Analysis of the presence/absence and inactivation of the vOTU domains and replacement of pPolB with other DNA polymerases in eukaryotic preplasmiviricots enabled us to outline a complete scenario for their origin and evolution.


Asunto(s)
Proteínas de la Cápside , Virus ADN , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Virus ADN/genética , Eucariontes/virología , Eucariontes/genética , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Modelos Moleculares , Filogenia
3.
Virus Evol ; 10(1): veae021, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562952

RESUMEN

Tripartite biotic interactions are inherently complex, and the strong interdependence of species and often one-sided exploitation can make these systems vulnerable to extinction. The persistence of species depends then on the balance between exploitation and avoidance of exploitation beyond the point where sustainable resource use is no longer possible. We used this general prediction to test the potential role of trait evolution for persistence in a tripartite microbial system consisting of a marine heterotrophic flagellate preyed upon by a giant virus, which in turn is parasitized by a virophage. Host and virophage may benefit from this interaction because the virophage reduces the harmful effects of the giant virus on the host population and the virophage can persist integrated into the host genome when giant viruses are scarce. We grew hosts and virus in the presence and absence of the virophage over ∼280 host generations and tested whether levels of exploitation and replication in the giant virus and/or virophage population evolved over the course of the experiment, and whether the changes were such that they could avoid overexploitation and extinction. We found that the giant virus evolved toward lower levels of replication and the virophage evolved toward increased replication but decreased exploitation of the giant virus. These changes reduced overall host exploitation by the virus and virus exploitation by the virophage and are predicted to facilitate persistence.

4.
Proc Natl Acad Sci U S A ; 121(11): e2314606121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38446847

RESUMEN

Endogenous viral elements (EVEs) are common genetic passengers in various protists. Some EVEs represent viral fossils, whereas others are still active. The marine heterotrophic flagellate Cafeteria burkhardae contains several EVE types related to the virophage mavirus, a small DNA virus that parasitizes the lytic giant virus CroV. We hypothesized that endogenous virophages may act as an antiviral defense system in protists, but no protective effect of virophages in wild host populations has been shown so far. Here, we tested the activity of virophage EVEs and studied their impact on giant virus replication. We found that endogenous mavirus-like elements (EMALEs) from globally distributed Cafeteria populations produced infectious virus particles specifically in response to CroV infection. However, reactivation was stochastic, often inefficient, and poorly reproducible. Interestingly, only one of eight EMALE types responded to CroV infection, implying that other EMALEs may be linked to different giant viruses. We isolated and cloned several reactivated virophages and characterized their particles, genomes, and infection dynamics. All tested virophages inhibited the production of CroV during coinfection, thereby preventing lysis of the host cultures in a dose-dependent manner. Comparative genomics of different C. burkhardae strains revealed that inducible EMALEs are common and are not linked to specific geographic locations. We demonstrate that naturally occurring virophage EVEs reactivate upon giant virus infection, thus providing a striking example that eukaryotic EVEs can become active under specific conditions. Moreover, our results support the hypothesis that virophages can act as an adaptive antiviral defense system in protists.


Asunto(s)
Virus Gigantes , Estramenopilos , Virosis , Humanos , Virófagos , Virus Gigantes/genética , Estramenopilos/genética , Antivirales
5.
Arch Virol ; 168(11): 283, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37904060

RESUMEN

Large DNA viruses in the phylum Nucleocytoviricota, sometimes referred to as "giant viruses" owing to their large genomes and virions, have been the subject of burgeoning interest over the last decade. Here, we describe recently adopted taxonomic updates for giant viruses within the order Imitervirales. The families Allomimiviridae, Mesomimiviridae, and Schizomimiviridae have been created to accommodate the increasing diversity of mimivirus relatives that have sometimes been referred to in the literature as "extended Mimiviridae". In addition, the subfamilies Aliimimivirinae, Megamimivirinae, and Klosneuvirinae have been established to refer to subgroups of the Mimiviridae. Binomial names have also been adopted for all recognized species in the order. For example, Acanthamoeba polyphaga mimivirus is now classified in the species Mimivirus bradfordmassiliense.


Asunto(s)
Virus Gigantes , Mimiviridae , Humanos , Virus Gigantes/genética , Virus ADN/genética , Mimiviridae/genética , Genoma Viral , Virión
6.
Proc Natl Acad Sci U S A ; 120(16): e2300465120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37036967

RESUMEN

Eukaryotic genomes contain a variety of endogenous viral elements (EVEs), which are mostly derived from RNA and ssDNA viruses that are no longer functional and are considered to be "genomic fossils." Genomic surveys of EVEs, however, are strongly biased toward animals and plants, whereas protists, which represent the majority of eukaryotic diversity, remain poorly represented. Here, we show that protist genomes harbor tens to thousands of diverse, ~14 to 40 kbp long dsDNA viruses. These EVEs, composed of virophages, Polinton-like viruses, and related entities, have remained hitherto hidden owing to poor sequence conservation between virus groups and their repetitive nature that precluded accurate short-read assembly. We show that long-read sequencing technology is ideal for resolving virus insertions. Many protist EVEs appear intact, and most encode integrases, which suggests that they have actively colonized hosts across the tree of eukaryotes. We also found evidence for gene expression in host transcriptomes and that closely related virophage and Polinton-like virus genomes are abundant in viral metagenomes, indicating that many EVEs are probably functional viruses.


Asunto(s)
Eucariontes , Virus , Animales , Eucariontes/genética , Virus ADN/genética , Virus/genética , Virófagos , Genoma Viral/genética , Filogenia
7.
Biomolecules ; 13(2)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36830574

RESUMEN

Virophages are small dsDNA viruses that hijack the machinery of giant viruses during the co-infection of a protist (i.e., microeukaryotic) host and represent an exceptional case of "hyperparasitism" in the viral world. While only a handful of virophages have been isolated, a vast diversity of virophage-like sequences have been uncovered from diverse metagenomes. Their wide ecological distribution, idiosyncratic infection and replication strategy, ability to integrate into protist and giant virus genomes and potential role in antiviral defense have made virophages a topic of broad interest. However, one limitation for further studies is the lack of clarity regarding the nomenclature and taxonomy of this group of viruses. Specifically, virophages have been linked in the literature to other "virophage-like" mobile genetic elements and viruses, including polinton-like viruses (PLVs), but there are no formal demarcation criteria and proper nomenclature for either group, i.e., virophage or PLVs. Here, as part of the ICTV Virophage Study Group, we leverage a large set of genomes gathered from published datasets as well as newly generated protist genomes to propose delineation criteria and classification methods at multiple taxonomic ranks for virophages 'sensu stricto', i.e., genomes related to the prototype isolates Sputnik and mavirus. Based on a combination of comparative genomics and phylogenetic analyses, we show that this group of virophages forms a cohesive taxon that we propose to establish at the class level and suggest a subdivision into four orders and seven families with distinctive ecogenomic features. Finally, to illustrate how the proposed delineation criteria and classification method would be used, we apply these to two recently published datasets, which we show include both virophages and other virophage-related elements. Overall, we see this proposed classification as a necessary first step to provide a robust taxonomic framework in this area of the virosphere, which will need to be expanded in the future to cover other virophage-related viruses such as PLVs.


Asunto(s)
Virófagos , Virus , Humanos , Virófagos/genética , Filogenia , Genoma Viral , Virus/genética , Eucariontes/genética
8.
Elife ; 102021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34698016

RESUMEN

Virophages can parasitize giant DNA viruses and may provide adaptive anti-giant virus defense in unicellular eukaryotes. Under laboratory conditions, the virophage mavirus integrates into the nuclear genome of the marine flagellate Cafeteria burkhardae and reactivates upon superinfection with the giant virus CroV. In natural systems, however, the prevalence and diversity of host-virophage associations has not been systematically explored. Here, we report dozens of integrated virophages in four globally sampled C. burkhardae strains that constitute up to 2% of their host genomes. These endogenous mavirus-like elements (EMALEs) separated into eight types based on GC-content, nucleotide similarity, and coding potential and carried diverse promoter motifs implicating interactions with different giant viruses. Between host strains, some EMALE insertion loci were conserved indicating ancient integration events, whereas the majority of insertion sites were unique to a given host strain suggesting that EMALEs are active and mobile. Furthermore, we uncovered a unique association between EMALEs and a group of tyrosine recombinase retrotransposons, revealing yet another layer of parasitism in this nested microbial system. Our findings show that virophages are widespread and dynamic in wild Cafeteria populations, supporting their potential role in antiviral defense in protists.


Viruses exist in all ecosystems in vast numbers and infect many organisms. Some of them are harmful but others can protect the organisms they infect. For example, a group of viruses called virophages protect microscopic sea creatures called plankton from deadly infections by so-called giant viruses. In fact, virophages need plankton infected with giant viruses to survive because they use enzymes from the giant viruses to turn on their own genes. A virophage called mavirus integrates its genes into the DNA of a type of plankton called Cafeteria. It lays dormant in the DNA until a giant virus called CroV infects the plankton. This suggests that the mavirus may be a built-in defense against CroV infections and laboratory studies seem to confirm this. But whether wild Cafeteria also use these defenses is unknown. Hackl et al. show that virophages are common in the DNA of wild Cafeteria and that the two appear to have a mutually beneficial relationship. In the experiments, the researchers sequenced the genomes of four Cafeteria populations from the Atlantic and Pacific Oceans and looked for virophages in their DNA. Each of the four Cafeteria genomes contained dozens of virophages, which suggests that virophages are important to these plankton. This included several relatives of the mavirus and seven new virophages. Virophage genes were often interrupted by so called jumping genes, which may take advantage of the virophages the way the virophages use giant viruses to meet their own needs. The experiments show that virophages often co-exist with marine plankton from around the world and these relationships are likely beneficial. In fact, the experiments suggest that the virophages may have played an important role in the evolution of these plankton. Further studies may help scientists learn more about virus ecology and how viruses have shaped the evolution of other creatures.


Asunto(s)
Genoma/fisiología , Retroelementos/fisiología , Estramenopilos/genética , Estramenopilos/virología , Virófagos/fisiología , Filogenia
9.
Comput Struct Biotechnol J ; 19: 5504-5509, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712396

RESUMEN

Due to the highly growing number of available genomic information, the need for accessible and easy-to-use analysis tools is increasing. To facilitate eukaryotic genome annotations, we created MOSGA. In this work, we show how MOSGA 2 is developed by including several advanced analyses for genomic data. Since the genomic data quality greatly impacts the annotation quality, we included multiple tools to validate and ensure high-quality user-submitted genome assemblies. Moreover, thanks to the integration of comparative genomics methods, users can benefit from a broader genomic view by analyzing multiple genomic data sets simultaneously. Further, we demonstrate the new functionalities of MOSGA 2 by different use-cases and practical examples. MOSGA 2 extends the already established application to the quality control of the genomic data and integrates and analyzes multiple genomes in a larger context, e.g., by phylogenetics.

10.
Curr Issues Mol Biol ; 40: 1-24, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32089519

RESUMEN

Double-stranded (ds) DNA viruses of the family Lavidaviridae, commonly known as virophages, are a fascinating group of eukaryotic viruses that depend on a coinfecting giant dsDNA virus of the Mimiviridae for their propagation. Instead of replicating in the nucleus, virophages multiply in the cytoplasmic virion factory of a coinfecting giant virus inside a phototrophic or heterotrophic protistal host cell. Virophages are parasites of giant viruses and can inhibit their replication, which may lead to increased survival rates of the infected host cell population. The genomes of virophages are 17-33 kilobase pairs (kbp) long and encode 16-34 proteins. Genetic signatures of virophages can be found in metagenomic datasets from various saltwater and freshwater environments around the planet. Most virophages share a set of conserved genes that code for a major and a minor capsid protein, a cysteine protease, a genome-packaging ATPase, and a superfamily 3 helicase, although the genomes are otherwise diverse and variable. Lavidaviruses share genes with other mobile genetic elements, suggesting that horizontal gene transfer and recombination have been major forces in shaping these viral genomes. Integrases are occasionally found in virophage genomes and enable these DNA viruses to persist as provirophages in the chromosomes of their viral and cellular hosts. As we watch the genetic diversity of this new viral family unfold through metagenomics, additional isolates are still lacking and critical questions regarding their infection cycle, host range, and ecology remain to be answered.


Asunto(s)
Variación Genética , Genoma Viral , Metagenoma , Virófagos/clasificación , Virófagos/genética , Cápside/química , Coinfección , ADN Viral/genética , Evolución Molecular , Transferencia de Gen Horizontal , Virus Gigantes/clasificación , Virus Gigantes/genética , Interacciones Microbiota-Huesped , Especificidad del Huésped , Metagenómica/métodos , Filogenia , Replicación Viral
11.
ISME J ; 15(1): 154-167, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32920602

RESUMEN

Phagocytosis is a fundamental process in marine ecosystems by which prey organisms are consumed and their biomass incorporated in food webs or remineralized. However, studies searching for the genes underlying this key ecological process in free-living phagocytizing protists are still scarce, in part due to the lack of appropriate ecological models. Our reanalysis of recent molecular datasets revealed that the cultured heterotrophic flagellate Cafeteria burkhardae is widespread in the global oceans, which prompted us to design a transcriptomics study with this species, grown with the cultured flavobacterium Dokdonia sp. We compared the gene expression between exponential and stationary phases, which were complemented with three starvation by dilution phases that appeared as intermediate states. We found distinct expression profiles in each condition and identified 2056 differentially expressed genes between exponential and stationary samples. Upregulated genes at the exponential phase were related to DNA duplication, transcription and translational machinery, protein remodeling, respiration and phagocytosis, whereas upregulated genes in the stationary phase were involved in signal transduction, cell adhesion, and lipid metabolism. We identified a few highly expressed phagocytosis genes, like peptidases and proton pumps, which could be used to target this ecologically relevant process in marine ecosystems.


Asunto(s)
Ecosistema , Estramenopilos , Expresión Génica , Procesos Heterotróficos , Océanos y Mares , Estramenopilos/genética
12.
Bioinformatics ; 36(22-23): 5514-5515, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33258916

RESUMEN

MOTIVATION: The generation of high-quality assemblies, even for large eukaryotic genomes, has become a routine task for many biologists thanks to recent advances in sequencing technologies. However, the annotation of these assemblies-a crucial step toward unlocking the biology of the organism of interest-has remained a complex challenge that often requires advanced bioinformatics expertise. RESULTS: Here, we present MOSGA (Modular Open-Source Genome Annotator), a genome annotation framework for eukaryotic genomes with a user-friendly web-interface that generates and integrates annotations from various tools. The aggregated results can be analyzed with a fully integrated genome browser and are provided in a format ready for submission to NCBI. MOSGA is built on a portable, customizable and easily extendible Snakemake backend, and thus, can be tailored to a wide range of users and projects. AVAILABILITY AND IMPLEMENTATION: We provide MOSGA as a web service at https://mosga.mathematik.uni-marburg.de and as a docker container at registry.gitlab.com/mosga/mosga: latest. Source code can be found at https://gitlab.com/mosga/mosga. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genoma , Programas Informáticos , Eucariontes
13.
Sci Data ; 7(1): 29, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31964893

RESUMEN

The heterotrophic stramenopile Cafeteria roenbergensis is a globally distributed marine bacterivorous protist. This unicellular flagellate is host to the giant DNA virus CroV and the virophage mavirus. We sequenced the genomes of four cultured C. roenbergensis strains and generated 23.53 Gb of Illumina MiSeq data (99-282 × coverage per strain) and 5.09 Gb of PacBio RSII data (13-45 × coverage). Using the Canu assembler and customized curation procedures, we obtained high-quality draft genome assemblies with a total length of 34-36 Mbp per strain and contig N50 lengths of 148 kbp to 464 kbp. The C. roenbergensis genome has a GC content of ~70%, a repeat content of ~28%, and is predicted to contain approximately 7857-8483 protein-coding genes based on a combination of de novo, homology-based and transcriptome-supported annotation. These first high-quality genome assemblies of a bicosoecid fill an important gap in sequenced stramenopile representatives and enable a more detailed evolutionary analysis of heterotrophic protists.


Asunto(s)
Genoma , Estramenopilos/genética , Composición de Base , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN , Transcriptoma
14.
Ann N Y Acad Sci ; 1447(1): 97-109, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31162694

RESUMEN

DNA viruses with efficient host genome integration capability were unknown in eukaryotes until recently. The discovery of virophages, satellite-like DNA viruses that depend on lytic giant viruses that infect protists, revealed a genetically diverse group of viruses with high genome mobility. Virophages can act as strong inhibitors of their associated giant viruses, and the resulting beneficial effects on their unicellular hosts resemble a population-based antiviral defense mechanism. By comparing various aspects of genome-integrating virophages, in particular the virophage mavirus, with other mobile genetic elements and parasite-derived defense mechanisms in eukaryotes and prokaryotes, we show that virophages share many features with other host-parasite systems. Yet, the dual lifestyle exhibited by mavirus remains unprecedented among eukaryotic DNA viruses, with potentially far-reaching ecological and evolutionary consequences for the host.


Asunto(s)
Genoma Viral/fisiología , Interacciones Huésped-Parásitos/fisiología , Virófagos/genética , Virófagos/metabolismo , Animales , Humanos
16.
Viruses ; 10(9)2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-30200276

RESUMEN

The discovery of giant viruses in unicellular eukaryotic hosts has raised new questions on the nature of viral life. Although many steps in the infection cycle of giant viruses have been identified, the quantitative life history traits associated with giant virus infection remain unknown or poorly constrained. In this study, we provide the first estimates of quantitative infection traits of a giant virus by tracking the infection dynamics of the bacterivorous protist Cafeteria roenbergensis and its lytic virus CroV. Leveraging mathematical models of infection, we quantitatively estimate the adsorption rate, onset of DNA replication, latency time, and burst size from time-series data. Additionally, by modulating the initial ratio of viruses to hosts, we also provide evidence of a potential MOI-dependence on adsorption and burst size. Our work provides a baseline characterization of giant virus infection dynamics relevant to ongoing efforts to understand the ecological role of giant viruses.


Asunto(s)
Mimiviridae/fisiología , Estramenopilos/virología , Modelos Teóricos , Acoplamiento Viral , Liberación del Virus , Replicación Viral
17.
Proc Natl Acad Sci U S A ; 115(28): 7332-7337, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29941605

RESUMEN

Virophages have the unique property of parasitizing giant viruses within unicellular hosts. Little is understood about how they form infectious virions in this tripartite interplay. We provide mechanistic insights into assembly and maturation of mavirus, a marine virophage, by combining structural and stability studies on capsomers, virus-like particles (VLPs), and native virions. We found that the mavirus protease processes the double jelly-roll (DJR) major capsid protein (MCP) at multiple C-terminal sites and that these sites are conserved among virophages. Mavirus MCP assembled in Escherichia coli in the absence and presence of penton protein, forming VLPs with defined size and shape. While quantifying VLPs in E. coli lysates, we found that full-length rather than processed MCP is the competent state for capsid assembly. Full-length MCP was thermally more labile than truncated MCP, and crystal structures of both states indicate that full-length MCP has an expanded DJR core. Thus, we propose that the MCP C-terminal domain serves as a scaffolding domain by adding strain on MCP to confer assembly competence. Mavirus protease processed MCP more efficiently after capsid assembly, which provides a regulation mechanism for timing capsid maturation. By analogy to Sputnik and adenovirus, we propose that MCP processing renders mavirus particles infection competent by loosening interactions between genome and capsid shell and destabilizing pentons for genome release into host cells. The high structural similarity of mavirus and Sputnik capsid proteins together with conservation of protease and MCP processing suggest that assembly and maturation mechanisms described here are universal for virophages.


Asunto(s)
Proteínas de la Cápside , Péptido Hidrolasas , Virión , Virófagos , Ensamble de Virus/fisiología , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Péptido Hidrolasas/química , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Virión/química , Virión/genética , Virión/metabolismo , Virófagos/química , Virófagos/fisiología
18.
Sci Rep ; 7(1): 5484, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28710447

RESUMEN

Whereas the protein composition and overall shape of several giant virus capsids have been described, the mechanism by which these large capsids assemble remains enigmatic. Here, we present a reconstruction of the capsid of Cafeteria roenbergensis virus (CroV), one of the largest viruses analyzed by cryo-electron microscopy (cryo-EM) to date. The CroV capsid has a diameter of 3,000 Å and a Triangulation number of 499. Unlike related mimiviruses, the CroV capsid is not decorated with glycosylated surface fibers, but features 30 Å-long surface protrusions that are formed by loops of the major capsid protein. Based on the orientation of capsomers in the cryo-EM reconstruction, we propose that the capsids of CroV and related giant viruses are assembled by a newly conceived assembly pathway that initiates at a five-fold vertex and continuously proceeds outwards in a spiraling fashion.


Asunto(s)
Cápside/ultraestructura , Microscopía por Crioelectrón , Virus Gigantes/fisiología , Virus Gigantes/ultraestructura , Mimiviridae/fisiología , Mimiviridae/ultraestructura , Ensamble de Virus/fisiología , Secuencia de Aminoácidos , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Genoma Viral , Virus Gigantes/genética , Mimiviridae/genética , Virión/ultraestructura
19.
Nature ; 540(7632): 288-291, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27929021

RESUMEN

Endogenous viral elements are increasingly found in eukaryotic genomes, yet little is known about their origins, dynamics, or function. Here we provide a compelling example of a DNA virus that readily integrates into a eukaryotic genome where it acts as an inducible antiviral defence system. We found that the virophage mavirus, a parasite of the giant Cafeteria roenbergensis virus (CroV), integrates at multiple sites within the nuclear genome of the marine protozoan Cafeteria roenbergensis. The endogenous mavirus is structurally and genetically similar to eukaryotic DNA transposons and endogenous viruses of the Maverick/Polinton family. Provirophage genes are not constitutively expressed, but are specifically activated by superinfection with CroV, which induces the production of infectious mavirus particles. Virophages can inhibit the replication of mimivirus-like giant viruses and an anti-viral protective effect of provirophages on their hosts has been hypothesized. We find that provirophage-carrying cells are not directly protected from CroV; however, lysis of these cells releases infectious mavirus particles that are then able to suppress CroV replication and enhance host survival during subsequent rounds of infection. The microbial host-parasite interaction described here involves an altruistic aspect and suggests that giant-virus-induced activation of provirophages might be ecologically relevant in natural protist populations.


Asunto(s)
Genoma/genética , Virus Gigantes/fisiología , Interacciones Huésped-Parásitos , Estramenopilos/genética , Estramenopilos/virología , Virófagos/crecimiento & desarrollo , Integración Viral , Elementos Transponibles de ADN/genética , Regulación Viral de la Expresión Génica , Genoma Viral/genética , Virus Gigantes/genética , Virus Gigantes/crecimiento & desarrollo , Mimiviridae/crecimiento & desarrollo , Profagos/genética , Profagos/fisiología , Estramenopilos/crecimiento & desarrollo , Sobreinfección , Virión/crecimiento & desarrollo , Virófagos/genética , Liberación del Virus , Replicación Viral
20.
Curr Opin Microbiol ; 31: 50-57, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26999382

RESUMEN

Viruses with genomes up to a few megabases in length are a common occurrence in nature, even though they have escaped our notice until recently. These giant viruses infect mainly single-celled eukaryotes and isolation efforts concentrating on amoebal hosts alone have spawned hundreds of viral isolates, featuring viruses with previously unseen virion morphologies and the largest known viral genomes and particles. One of the challenges that lie ahead is to analyze and categorize the available data and to establish an approved classification system that reflects the evolutionary relationships and biological properties of these viruses. Extensive sampling of Acanthamoeba-infecting mimiviruses and initial characterization of their virophage parasites have provided a first blueprint of the genetic diversity and composition of a giant virus clade that will facilitate the taxonomic grouping of these fascinating microorganisms.


Asunto(s)
Evolución Molecular , Genoma Viral/genética , Virus Gigantes/clasificación , Virus Gigantes/genética , Acanthamoeba/virología , Secuencia de Bases , Mimiviridae/genética , Filogenia , Análisis de Secuencia de ADN , Virófagos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...