Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Einstein (Sao Paulo) ; 22: eAO0619, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39258689

RESUMEN

OBJECTIVE: Glucagon-like peptide-1 (GLP1) and leptin (Lep) are afferent signals that regulate energy metabolism. Lactational hypernutrition results in hyperphagia and adiposity in adult life, and these events can be prevented by exercise. We evaluated the effects of swimming training on hypothalamic (GLP1-R) and Lep receptor (Lep-R) gene expressions in lactational hypernutrition-induced obesity. METHODS: On the 3rd postnatal day, the litter sizes of lactating dams were adjusted to small litters (SL; 3 pups/dams) or normal litters (NL; 9 pups/dams). After weaning (21 days), NL and SL male rats were randomly distributed to sedentary (Sed) and exercised (Exe) groups. Exercised mice swam (30 min/3 times/week) for 68 days. Food intake and body weight gain were registered. At 92 days, intraperitoneal glucose and insulin tolerance tests were performed and rats were euthanized at 93 days; adipose tissue depots were weighed, and blood counts and plasma biochemical analyses performed. Hypothalamus were isolated to evaluate Lep-R and GLP1-R gene expressions. RESULTS: Small litters sedentary rats presented increased body weight gain, adiposity, insulin sensibility and higher fasting values of glucose and triglycerides, besides higher hypothalamic gene expressions of Lep-R and GLP1-R, compared to NLSed animals. SLExe rats did not develop obesity or metabolic abnormalities and Lep-R and GLP1-R hypothalamic gene expressions were normalized. CONCLUSION: Lactational hypernutrition induces obesity and metabolic dysfunction in adult life, in association with higher hypothalamic expressions of the Lep-R and GLP1-R genes. Exercise prevented obesity and improved metabolic state in SL overnourished rats, and normalized their hypothalamic Lep-R and GLP1-R gene expressions.


Asunto(s)
Hipotálamo , Obesidad , Condicionamiento Físico Animal , Ratas Wistar , Receptores de Leptina , Natación , Animales , Hipotálamo/metabolismo , Obesidad/metabolismo , Obesidad/genética , Obesidad/prevención & control , Condicionamiento Físico Animal/fisiología , Condicionamiento Físico Animal/métodos , Masculino , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Femenino , Natación/fisiología , Tamaño de la Camada , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/genética , Ratas , Lactancia/metabolismo , Lactancia/fisiología , Péptido 1 Similar al Glucagón/metabolismo , Leptina/sangre , Leptina/metabolismo , Distribución Aleatoria , Expresión Génica , Ingestión de Alimentos/fisiología , Adiposidad/fisiología
2.
J Ethnopharmacol ; 255: 112722, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32114165

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Euphorbia tirucalli L. is an African plant that grows well in Brazil. Individuals diagnosed with cancer frequently consume latex from E. tirucalli, dissolved in drinking water. In vitro studies confirm the antitumor potential of E. tirucalli latex, but in vivo evaluations are scarce. AIM OF THE STUDY: To evaluate the effect of intake of an aqueous solution of E. tirucalli latex on tumor growth, cachexia, and immune response in Walker 256 tumor-bearing rats. MATERIALS AND METHODS: Latex from E. tirucalli was collected and analyzed by LC-MS. Sixty male Wistar rats (age, 90 days) were randomly divided into four groups: C, control group (without tumor); W, Walker 256 tumor-bearing group; SW1, W animals but treated with 25 µL latex/mL water; and SW2, W animals but treated with 50 µL latex/mL water. Animals received 1 mL of latex solution once a day by gavage. After 15 d, animals were euthanized, tumor mass was determined, and glucose and triacylglycerol serum levels were measured by using commercial kits. Change in the body weight during tumor development was calculated, and proliferation capacity of tumor cells was assessed by the Alamar Blue assay. Phagocytosis and superoxide anion production by peritoneal macrophages and circulating neutrophils were analyzed by enzymatic and colorimetric assays. Data are analyzed by one-way ANOVA followed by Tukey's post-hoc test, with the significance level set at 5%. RESULTS: The analysis of the latex revealed the presence of triterpenes. The ingestion of the latex aqueous solution promoted 40% and 60% reduction of the tumor mass in SW1 and SW2 groups, respectively (p < 0.05). The proliferative capacity of tumor cells from SW2 group was 76% lower than that of cells from W group (p < 0.0001). Animals treated with latex gained, on average, 20 g (SW1) and 8 g (SW2) weight. Glucose and triacylglycerol serum levels in SW1 and SW2 animals were similar to those in C group rats. Peritoneal macrophages and blood neutrophils from SW1 and SW2 animals produced 30-40% less superoxide anions than those from W group animals (p < 0.05), but neutrophils from SW2 group showed an increased phagocytic capacity (20%, vs. W group). CONCLUSIONS: E. tirucalli latex, administered orally for 15 d, efficiently reduced tumor growth and cachexia in Walker 256 tumor-bearing rats. Decreased tumor cell proliferative capacity was one of the mechanisms involved in this effect. Further, the data suggest immunomodulatory properties of E. tirucalli latex. The results agree with folk data on the antitumor effect of latex ingestion, indicating that it may be useful as an adjunct in the treatment of cancer patients. For this, further in vivo studies in animal and human models need to be conducted.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Caquexia/prevención & control , Carcinoma 256 de Walker/tratamiento farmacológico , Euphorbia , Látex/farmacología , Extractos Vegetales/farmacología , Animales , Antineoplásicos Fitogénicos/aislamiento & purificación , Biomarcadores/sangre , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Caquexia/sangre , Caquexia/inmunología , Caquexia/fisiopatología , Carcinoma 256 de Walker/patología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Euphorbia/química , Látex/aislamiento & purificación , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Masculino , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Extractos Vegetales/aislamiento & purificación , Ratas Wistar , Triglicéridos/sangre , Carga Tumoral/efectos de los fármacos , Pérdida de Peso/efectos de los fármacos
3.
Toxicology ; 421: 30-40, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30940548

RESUMEN

Prenatal exposure to phthalates is associated with reproductive and metabolic systems alterations. We investigated the effects of in utero and lactational exposure to Di-(2-ethyl-hexyl) phthalate (DEHP) and Di-n-butyl phthalate (DBP) on the reproductive system and glycemic homeostasis in male and female offspring of rats. Pregnant rats were exposed to equimolar doses (0.018, 0.18 and 1.8 mmol/kg/day) of DEHP or DBP corresponding to 7, 70, and 700 mg/kg/day for DEHP and 5, 50, and 500 mg/kg/day for DBP, respectively, by oral gavage from gestation day 13 to postnatal day 21, and using canola oil as vehicle control. Male and female offspring were examined for body weight development, external markers of prenatal androgenization and puberty onset, plasma concentrations of glucose and insulin, insulin tolerance (ITT), glucose-stimulated insulin secretion (GSIS), and the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and pancreatic and duodenal homeobox 1 protein (PDX-1). Male and female rats exposed to the highest doses of DEHP and DBP exhibited increased fasting glucose levels. In rats exposed to DEHP 700 mg/kg/day we also observed a reduced glucose decay rate (Kitt) following insulin administration and decreased insulin secretion in the GSIS assay. Male offspring exposed to DEHP 700 mg/kg/day had reduced anogenital distance (AGD) on PDN 4 and delayed preputial separation at puberty, while female offspring exposed to DEHP 70 and 700 mg/kg/day and to the highest DBP dose had delayed vaginal opening. Our results suggest that maternal treatment with DEHP and DBP can induce a wide range of metabolic and reproductive alterations in offspring rats, with more pronounced effects following DEHP exposure.


Asunto(s)
Glucemia/efectos de los fármacos , Dibutil Ftalato/toxicidad , Dietilhexil Ftalato/toxicidad , Genitales/efectos de los fármacos , Intercambio Materno-Fetal , Plastificantes/toxicidad , Canal Anal/anatomía & histología , Animales , Femenino , Genitales/anatomía & histología , Genitales/crecimiento & desarrollo , Homeostasis/efectos de los fármacos , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal , Ratas Wistar
4.
Clin Nutr ESPEN ; 10(1): e13-e20, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28531442

RESUMEN

BACKGROUND & AIMS: Reduction in litter size during lactation induces hypernutrition of the offspring culminating with altered metabolic programming during adult life. Overnourished rats present alterations in the endocrine pancreas and major predisposition to the development of type 2 diabetes. Our study evaluated the impact of swimming training on insulin secretion control in overnourished rats. METHODS: At postnatal day 3 male rat pup litters were redistributed randomly into Small Litters (SL, 3 pups) or Normal Litters (NL, 9 pups) to induce early overfeeding during lactation. Both groups were subjected to swimming training (3 times/week/30 min) post-weaning (21 days) for 72 days. At 92 days of life pancreatic islets were isolated using collagenase technique and incubated with glucose in the presence or absence of acetylcholine (Ach, 0.1-1000 µM) or glucagon-like peptide 1 (GLP1, 10 nM). Adipose tissue depots (white and brown) and endocrine pancreas samples were examined by histological analysis. Food intake and body weight were measured. Blood biochemical parameters were also evaluated. RESULTS: Swimming training prevented metabolic program alteration by hypernutrition during lactation. Exercise reduced obesity and hyperglycemia in overnourished rats. Pancreatic islets isolated from overnourished rats showed a reduction in glucose-induced insulin secretion and cholinergic responses while the insulinotropic action of GLP1 was increased. Physical training effectively restored glucose-induced insulin secretion and GLP1-stimulated action in pancreatic islets from overnourished rats. However, swimming training did not correct the weak cholinergic response in pancreatic islets isolated from overnourished rats. CONCLUSIONS: Swimming training avoids obesity development, corrects glucose-induced insulin secretion, as well as, GLP1 insulinotropic response in overnourished rats.

5.
Clin Nutr ESPEN ; 10(1): e5-e12, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28531447

RESUMEN

This study aimed to evaluate the effects of Di-(2-ethylhexyl) phthalate (DEHP) exposure during lactation or puberty on the glycemic homeostasis and the sexual maturation of male rats. Thus, in a first experiment, Wistar rats were exposed to DEHP (7.5 mg/kg/day and 75 mg/kg/day) from the 1st to the 21st day of lactation. The dams and their male offspring were evaluated regarding weight gain, food ingestion, serum concentrations of glucose and lipids, and insulin tolerance test (ITT). In addition, the male offspring was submitted to the quantification of insulin secretion in pancreatic islets isolated in vitro, concentration of fecal androgen metabolites and determination of the age of prepucial separation. In a second round of experiments, peripuberal male rats were exposed to the same DEHP doses for 30 days (22nd to 52nd day of life). These animals were evaluated regarding weight gain and food ingestion, concentration of fecal androgen metabolites, and prepucial separation along the treatment period. The ITT and analysis of serum concentrations of glucose and lipids were carried out at the end of the treatment. The male offspring presented higher vulnerability to DEHP exposure, revealing changes in the glycemic homeostasis in adulthood, characterized by the increase in fasting glycemia, decrease in insulin sensitivity and lower insulin secretion in isolated pancreatic islets. The concentrations of cholesterol and triglycerides were reduced in the offspring exposed during lactation. The animals exposed throughout the pubertal period also presented alterations in the fasting glycemia (hyperglycemia). The DEHP doses used in this study did not induce any alteration in the androgenic status of rats that were exposed either during lactation or puberty. Overall, our results suggest that DEHP exposure during lactation or puberty can induce metabolic changes at doses that do not induce classical anti-androgen alterations.

6.
Int J Burns Trauma ; 4(1): 31-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24624312

RESUMEN

UNLABELLED: The objective of the study is to investigate how L-Arginine pulmonary metabolism is altered in response Pseudomonas aeruginosa (P. aeruginosa) induced septic conditions using an ovine model. METHODS: Seven female sheep were infused with a primed-constant infusion of L-[(15)N2-guanidino, 5, 5, (2)H2] L-Arginine for 28 hs. After the initial 4 hs of the L-Arginine infusion, a continuous infusion of live Pseudomonas aeruginosa bacteria started for 24 hs. A NO synthase (NOS) inhibitor, N(G)-Methyl-L-arginine (L-NMA), infusion was added during the last 4 hs of the bacterial infusion. Blood samples were taken at specific time points for isotopic enrichment during control, septic and NOS blocking phases of the study. RESULTS: We observed that the level of total delivery of L-Arginine to the lungs was significantly decreased in septic phase after 24 hours of pseudomonas infusion. In contrast, the fractional uptake and metabolism of L-Arginine by the lungs was doubled during septic phase relative to the control phase (MARG-basal = 100% vs. MARG-septic = 220 ± 56%, P < 0.05). NO production in the lungs was also significantly increased. Infusion of L-NMA markedly blunted this elevated NO production and attenuated the total arginine metabolized in the septic lungs (MARG-septic = 220 ± 56% vs. MARG-NO blocking = -25 ± 20%; P < 0.05). We demonstrated sepsis induced by P. aeruginosa infusion caused an increase in the fractional uptake and metabolic rate of arginine in the lungs. Furthermore, our data suggests that arginine was mainly consumed via arginine - NO pathway, which might be responsible for this enhanced arginine metabolic activity in the septic lungs.

7.
Int J Burns Trauma ; 3(4): 201-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24273695

RESUMEN

UNLABELLED: The objective of the study is to investigate how L-Arginine pulmonary metabolism is altered in response Pseudomonas aeruginosa (P. aeruginosa) induced septic conditions using an ovine model. METHODS: Seven female sheep were infused with a primed-constant infusion of L-[(15)N2-guanidino, 5, 5, (2)H2] L-Arginine for 28 hs. After the initial 4 hs of the L-Arginine infusion, a continuous infusion of live Pseudomonas aeruginosa bacteria started for 24 hs. A NO synthase (NOS) inhibitor, N(G)-Methyl-L-arginine (L-NMA), infusion was added during the last 4 hs of the bacterial infusion. Blood samples were taken at specific time points for isotopic enrichment during control, septic and NOS blocking phases of the study. RESULTS: We observed that the level of total delivery of L-Arginine to the lungs was significantly decreased in septic phase after 24 hours of pseudomonas infusion. In contrast, the fractional uptake and metabolism of L-Arginine by the lungs was doubled during septic phase relative to the control phase (MARG-basal = 100% vs. MARG-septic = 220 ± 56%, P < 0.05). NO production in the lungs was also significantly increased. Infusion of L-NMA markedly blunted this elevated NO production and attenuated the total arginine metabolized in the septic lungs (Mnitrate-septic = 43.6 ± 5.7 vs. Mnitrate-septic + L-NMA = 13.4 ± 5.1 umol/kg/min; p < 0.05). We demonstrated sepsis induced by P. aeruginosa infusion caused an increase in the fractional uptake and metabolic rate of arginine in the lungs. Furthermore, our data suggests that arginine was mainly consumed via arginine - NO pathway, which might be responsible for this enhanced arginine metabolic activity in the septic lungs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA