Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anat Rec (Hoboken) ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801020

RESUMEN

The evolution of organisms can be studied through the lens of developmental systems, as the timing of development of morphological features is an important aspect to consider when studying a phenotype. Such data can be challenging to obtain in fossil amniotes owing to the scarcity of their fossil record. However, the numerous remains of Rancho La Brea allow a detailed study of the postnatal changes in an extinct sabertoothed felid: Smilodon fatalis. Despite numerous previous studies on the ontogeny of Smilodon, an important question remained open: how did the cubs of Smilodon acquire and process food? By applying 3D geometric morphometrics and finite element analyses to 49 mandibles at various developmental stages (22 of S. fatalis, 23 of Panthera leo, and 4 of early diverging felids), we assess the changes in mandibular shape and performance during growth. Both lions and sabertooths exhibit a shift in mandibular shape, aligning with eruption of the lower carnassial. This marks the end of weaning in lions and suggests a prolonged weaning period in S. fatalis owing to its delayed eruption sequence. We also highlight distinct ontogenetic trajectories, with S. fatalis undergoing more postnatal mandibular shape changes. Finally, although S. fatalis appears more efficient than P. leo at performing an anchor bite, this efficiency is acquired through ontogeny and at a quite late age. The delayed shape change compared with P. leo and the low biting efficiency during the growth in Smilodon could indicate an extended duration of the parental care compared with P. leo.

2.
Curr Biol ; 34(11): 2460-2473.e4, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38759651

RESUMEN

The sabertooth morphology stands as a classic case of convergence, manifesting recurrently across various vertebrate groups, prominently within two carnivorans clades: felids and nimravids. Nonetheless, the evolutionary mechanisms driving these recurring phenotypes remain insufficiently understood, lacking a robust phylogenetic and spatiotemporal framework. We reconstruct the tempo and mode of craniomandibular evolution of Felidae and Nimravidae and evaluate the strength of the dichotomy between conical and saber-toothed species, as well as within saber-toothed morphotypes. To do so, we investigate morphological variation, convergence, phenotypic integration, and evolutionary rates, employing a comprehensive dataset of nearly 200 3D models encompassing mandibles and crania from both extinct and extant feline-like carnivorans, spanning their entire evolutionary timeline. Our results reject the hypothesis of a distinctive sabertooth morphology, revealing instead a continuous spectrum of feline-like phenotypes in both the cranium and mandible, with sporadic instances of unequivocal convergence. Disparity peaked at the end of the Miocene and is usually higher in clades containing taxa with extreme sabertoothed adaptations. We show that taxa with saberteeth exhibit a lower degree of craniomandibular integration, allowing to exhibit a greater range of phenotypes. Those same groups usually show a burst of morphological evolutionary rate at the beginning of their evolutionary history. Consequently, we propose that a reduced degree of integration coupled with rapid evolutionary rates emerge as key components in the development of a sabertooth morphology in multiple clades.


Asunto(s)
Evolución Biológica , Fósiles , Mandíbula , Filogenia , Cráneo , Animales , Mandíbula/anatomía & histología , Cráneo/anatomía & histología , Fósiles/anatomía & histología , Carnívoros/anatomía & histología , Carnívoros/clasificación , Felidae/anatomía & histología , Felidae/clasificación , Fenotipo
3.
PeerJ ; 11: e15776, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37671356

RESUMEN

The initial radiation of Eosauropterygia during the Triassic biotic recovery represents a key event in the dominance of reptiles secondarily adapted to marine environments. Recent studies on Mesozoic marine reptile disparity highlighted that eosauropterygians had their greatest morphological diversity during the Middle Triassic, with the co-occurrence of Pachypleurosauroidea, Nothosauroidea and Pistosauroidea, mostly along the margins of the Tethys Ocean. However, these previous studies quantitatively analysed the disparity of Eosauropterygia as a whole without focussing on Triassic taxa, thus limiting our understanding of their diversification and morphospace occupation during the Middle Triassic. Our multivariate morphometric analyses highlight a clearly distinct colonization of the ecomorphospace by the three clades, with no evidence of whole-body convergent evolution with the exception of the peculiar pistosauroid Wangosaurus brevirostris, which appears phenotypically much more similar to nothosauroids. This global pattern is mostly driven by craniodental differences and inferred feeding specializations. We also reveal noticeable regional differences among nothosauroids and pachypleurosauroids of which the latter likely experienced a remarkable diversification in the eastern Tethys during the Pelsonian. Our results demonstrate that the high phenotypic plasticity characterizing the evolution of the pelagic plesiosaurians was already present in their Triassic ancestors, casting eosauropterygians as particularly adaptable animals.


Asunto(s)
Fósiles , Fenotipo , Reptiles , Animales , Adaptación Fisiológica , Análisis Multivariante , Reptiles/anatomía & histología , Reptiles/clasificación , Fósiles/anatomía & histología , Filogenia
4.
Proc Biol Sci ; 289(1988): 20221627, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36475442

RESUMEN

Cat-like carnivorans are a textbook example of convergent evolution, with distinct morphological differences between taxa with short or elongated upper canines, the latter often being interpreted as an adaptation to bite at large angles and subdue large prey. This interpretation of the sabre-tooth condition is reinforced by a reduced taxonomic sampling in some studies, often focusing on highly derived taxa or using simplified morphological models. Moreover, most biomechanical analyses focus on biting scenarios at small gapes, ideal for modern carnivora but ill-suited to test for subduction of large prey by sabre-toothed taxa. In this contribution, we present the largest three-dimensional collection-based muscle-induced biting simulations on cat-like carnivorans by running a total of 1074 analyses on 17 different taxa at three different biting angles (30°, 60° and 90°) including both morphologies. While our results show a clear adaptation of extreme sabre-toothed taxa to bite at larger angles in terms of stress distribution, other performance variables display surprising similarities between all forms at the different angles tested, highlighting a continuous rather than bipolar spectrum of hunting methods in cat-like carnivorans and demonstrating a wide functional disparity and nuances of the sabre-tooth condition that cannot simply be characterized by specialized feeding biomechanics.

5.
Proc Biol Sci ; 289(1982): 20221214, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36100016

RESUMEN

Amniotes have been a major component of marine trophic chains from the beginning of the Triassic to present day, with hundreds of species. However, inferences of their (palaeo)ecology have mostly been qualitative, making it difficult to track how dietary niches have changed through time and across clades. Here, we tackle this issue by applying a novel geometric morphometric protocol to three-dimensional models of tooth crowns across a wide range of raptorial marine amniotes. Our results highlight the phenomenon of dental simplification and widespread convergence in marine amniotes, limiting the range of tooth crown morphologies. Importantly, we quantitatively demonstrate that tooth crown shape and size are strongly associated with diet, whereas crown surface complexity is not. The maximal range of tooth shapes in both mammals and reptiles is seen in medium-sized taxa; large crowns are simple and restricted to a fraction of the morphospace. We recognize four principal raptorial guilds within toothed marine amniotes (durophages, generalists, flesh cutters and flesh piercers). Moreover, even though all these feeding guilds have been convergently colonized over the last 200 Myr, a series of dental morphologies are unique to the Mesozoic period, probably reflecting a distinct ecosystem structure.


Asunto(s)
Ecosistema , Diente , Animales , Evolución Biológica , Conducta Alimentaria , Mamíferos , Reptiles , Diente/anatomía & histología
6.
Am J Bot ; 109(9): 1428-1442, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35942982

RESUMEN

PREMISE: The expansion of Pinaceae during the Cretaceous is exemplified by the numerous ovulate cone taxa found in western Europe and North America. The Belgian Wealden facies deposits have delivered hundreds of exceptionally well-preserved yet isolated pinaceous ovulate cones; these cones were placed by convention within form-genera. Ten species have been described in Belgium, representing about 20% of the known fossil record of this period. However, the validity of these taxa is questionable because their intra- and interspecific variabilities have never been thoroughly studied. Moreover, quantifying the expansion of Pinaceae in terms of morphospace occupation is desirable to reveal the dynamics of this critical radiation. METHODS: We used linear and geometric morphometry to quantify the shape of the extensive sample of Cretaceous cones of Belgium. These methods were also applied to extant pinaceous species to compare the morphological disparity of Cretaceous assemblages against those of today in selected ecosystems. We used ordination methods (PCA) to visualize morphospace occupation and test for species delineation. RESULTS: The morphological disparity was not higher in fossil species than in extant species we sampled. Both morphological approaches confirmed that the species Pityostrobus andraei presents high morphological variability. Our resampling tests indicate that ovulate cone morphological variability can be satisfactorily quantified with as few as 15 specimens. CONCLUSIONS: The methodology used here is relevant for quantifying both the variability and the diversity of many fossil assemblages, paving the way for a more robust evaluation of Cretaceous pinaceous diversity.


Asunto(s)
Ecosistema , Pinaceae , Bélgica , Evolución Biológica , Fósiles , Filogenia , Pinaceae/anatomía & histología
7.
Proc Biol Sci ; 289(1975): 20220585, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35611532

RESUMEN

Mosasaurid squamates were the dominant amniote predators in marine ecosystems during most of the Late Cretaceous. Here, we use a suite of biomechanically rooted, functionally descriptive ratios in a framework adapted from population ecology to investigate how the morphofunctional disparity of mosasaurids evolved prior to the Cretaceous-Palaeogene (K/Pg) mass extinction. Our results suggest that taxonomic turnover in mosasaurid community composition from Campanian to Maastrichtian is reflected by a notable global increase in morphofunctional disparity, especially driving the North American record. Ecomorphospace occupation becomes polarized during the Late Maastrichtian, with morphofunctional disparity plateauing in the Southern Hemisphere and decreasing in the Northern Hemisphere. We show that these changes are not strongly associated with mosasaurid size, but rather with the functional capacities of their skulls. Our novel approach indicates that mosasaurid morphofunctional disparity was in decline in multiple provincial communities before the K/Pg mass extinction, highlighting region-specific patterns of disparity evolution and the importance of assessing vertebrate extinctions both globally and locally. Ecomorphological differentiation in mosasaurid communities, coupled with declines in other formerly abundant marine reptile groups, indicates widespread restructuring of higher trophic levels in marine food webs was well underway when the K/Pg mass extinction took place.


Asunto(s)
Extinción Biológica , Fósiles , Animales , Evolución Biológica , Ecosistema , Reptiles/anatomía & histología
8.
PLoS One ; 17(3): e0265237, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35298510

RESUMEN

Hypselodont (ever-growing) teeth of lagomorphs or rodents have higher wear rates (of a magnitude of mm/week), with compensating growth rates, compared to the non-ever-growing teeth of ungulates (with a magnitude of mm/year). Whether this is due to a fundamental difference in enamel hardness has not been investigated so far. We prepared enamel samples (n = 120 per species) from incisors of cattle (Bos primigenius taurus) and nutria (Myocastor coypus, hypselodont incisors) taken at slaughterhouses, and submitted them to indentation hardness testing. Subsequently, samples were split into 4 groups per species (n = 24 per species and group) that were assessed for abrasion susceptibility by a standardized brush test with a control (no added abrasives) and three treatment groups (using fine silt at 4 ±1 µm particle size, volcanic ash at 96 ±9 µm, or fine sand at 166 ±15 µm as abrasives), in which enamel abrasion was quantified as height loss by before-and-after profilometry. The difference in enamel hardness between the species was highly significant, with nutria enamel achieving 78% of the hardness of cattle enamel. In the control and the fine sand group, no enamel height loss was evident, which was attributed to the in vitro system in the latter group, where the sand particles were brushed out of the test slurry by the brushes' bristles. For fine silt and volcanic ash, nutria enamel significantly lost 3.65 and 3.52 times more height than cattle. These results suggest a relationship between enamel hardness and susceptibility to abrasion. However, neither the pattern within the species nor across the species indicated a monotonous relationship between hardness and height loss; rather, the difference was due to qualitative step related to species. Hence, additional factors not measured in this study must be responsible for the differences in the enamel's susceptibility to abrasion. While the in vitro brush system cannot be used to rank abrasive test substances in terms of their abrasiveness, it can differentiate abrasion susceptibility in dental tissue of different animal species. The results caution against considering enamel wear as a similar process across mammals.


Asunto(s)
Abrasión de los Dientes , Erosión de los Dientes , Animales , Bovinos , Esmalte Dental , Dureza , Incisivo , Mamíferos , Arena , Cepillado Dental
10.
PeerJ ; 9: e11222, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34026348

RESUMEN

Dyrosauridae is a clade of neosuchian crocodyliforms that diversified in terrestrial and aquatic environments across the Cretaceous-Paleogene transition. The postcranial anatomy of dyrosaurids has long been overlooked, obscuring both their disparity and their locomotive adaptations. Here we thoroughly describe of the postcranial remains of an unusually small dyrosaurid, Cerrejonisuchus improcerus, from the middle-late Paleocene Cerrejón Formation of Colombia, and we provide a wealth of new data concerning the postcranial anatomy of the key dyrosaurids: Congosaurus bequaerti and Hyposaurus rogersii. We identify a series of postcranial autapomorphies in Cerrejonisuchus improcerus (an elliptic-shaped odontoid laterally wide, a ulna possessing a double concavity, a fibula bearing a widely flattened proximal end, a pubis showing a large non-triangular distal surface) as well as functionally-important traits such as a relatively long ulna (85% of the humerus' length), short forelimb (83% of hindlimb's length), or thoracic vertebra bearing comparatively large lateral process (with widened parapophysis and diapophysis) along with strongly arched thoracic ribs allowing a more sturdy and cylindrical rib cage. These indicate a more terrestrial lifestyle for Cerrejonisuchus compared to the derived members of the clade. We also built a dataset of 187 traits on 27 taxa, that extensively samples the cranial and postcranial architectures of exemplar crocodyliforms. We analyze these data in via Principal Coordinate Analysis (PCoA) to visualize the postcranial morphospace occupation of Dyrosauridae, Thalattosuchia, and Crocodylia. Our data reveal the existence of a distinctive postcranial anatomy for Dyrosauridae that is markedly distinct from that of crocodylians. As a result, modern crocodylians are probably not good functional analog for extinct crocodyliformes. Postcranial data should also be more widely used in phylogenetic and disparity analyses of Crocodyliformes.

11.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33798098

RESUMEN

Elucidating when Neanderthal populations disappeared from Eurasia is a key question in paleoanthropology, and Belgium is one of the key regions for studying the Middle to Upper Paleolithic transition. Previous radiocarbon dating placed the Spy Neanderthals among the latest surviving Neanderthals in Northwest Europe with reported dates as young as 23,880 ± 240 B.P. (OxA-8912). Questions were raised, however, regarding the reliability of these dates. Soil contamination and carbon-based conservation products are known to cause problems during the radiocarbon dating of bulk collagen samples. Employing a compound-specific approach that is today the most efficient in removing contamination and ancient genomic analysis, we demonstrate here that previous dates produced on Neanderthal specimens from Spy were inaccurately young by up to 10,000 y due to the presence of unremoved contamination. Our compound-specific radiocarbon dates on the Neanderthals from Spy and those from Engis and Fonds-de-Forêt demonstrate that they disappeared from Northwest Europe at 44,200 to 40,600 cal B.P. (at 95.4% probability), much earlier than previously suggested. Our data contribute significantly to refining models for Neanderthal disappearance in Europe and, more broadly, show that chronometric models regarding the appearance or disappearance of animal or hominin groups should be based only on radiocarbon dates obtained using robust pretreatment methods.


Asunto(s)
Antropología , Extinción Biológica , Hombre de Neandertal , Animales , Arqueología , Europa (Continente) , Fósiles , Genómica/métodos , Humanos , Datación Radiométrica
12.
PeerJ ; 9: e10647, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33665003

RESUMEN

Even though a handful of long-lived reptilian clades dominated Mesozoic marine ecosystems, several biotic turnovers drastically changed the taxonomic composition of these communities. A seemingly slow paced, within-geological period turnover took place across the Early-Middle Jurassic transition. This turnover saw the demise of early neoichthyosaurians, rhomaleosaurid plesiosaurians and early plesiosauroids in favour of ophthalmosaurid ichthyosaurians and cryptoclidid and pliosaurid plesiosaurians, clades that will dominate the Late Jurassic and, for two of them, the entire Early Cretaceous as well. The fossil record of this turnover is however extremely poor and this change of dominance appears to be spread across the entire middle Toarcian-Bathonian interval. We describe a series of ichthyosaurian and plesiosaurian specimens from successive geological formations in Luxembourg and Belgium that detail the evolution of marine reptile assemblages across the Early-Middle Jurassic transition within a single area, the Belgo-Luxembourgian sub-basin. These fossils reveal the continuing dominance of large rhomaleosaurid plesiosaurians, microcleidid plesiosaurians and Temnodontosaurus-like ichthyosaurians up to the latest Toarcian, indicating that the structuration of the upper tier of Western Europe marine ecosystems remained essentially constant up to the very end of the Early Jurassic. These fossils also suddenly record ophthalmosaurid ichthyosaurians and cryptoclidid plesiosaurians by the early Bajocian. These results from a geographically-restricted area provide a clearer picture of the shape of the marine reptile turnover occurring at the early-Middle Jurassic transition. This event appears restricted to the sole Aalenian stage, reducing the uncertainty of its duration, at least for ichthyosaurians and plesiosaurians, to 4 instead of 14 million years.

13.
Sci Rep ; 10(1): 16434, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33009498

RESUMEN

Throughout their evolution, tetrapods have repeatedly colonised a series of ecological niches in marine ecosystems, producing textbook examples of convergent evolution. However, this evolutionary phenomenon has typically been assessed qualitatively and in broad-brush frameworks that imply simplistic macroevolutionary landscapes. We establish a protocol to visualize the density of trait space occupancy and thoroughly test for the existence of macroevolutionary landscapes. We apply this protocol to a new phenotypic dataset describing the morphology of short-necked plesiosaurians, a major component of the Mesozoic marine food webs (ca. 201 to 66 Mya). Plesiosaurians evolved this body plan multiple times during their 135-million-year history, making them an ideal test case for the existence of macroevolutionary landscapes. We find ample evidence for a bimodal craniodental macroevolutionary landscape separating latirostrines from longirostrine taxa, providing the first phylogenetically-explicit quantitative assessment of trophic diversity in extinct marine reptiles. This bimodal pattern was established as early as the Middle Jurassic and was maintained in evolutionary patterns of short-necked plesiosaurians until a Late Cretaceous (Turonian) collapse to a unimodal landscape comprising longirostrine forms with novel morphologies. This study highlights the potential of severe environmental perturbations to profoundly alter the macroevolutionary dynamics of animals occupying the top of food chains.


Asunto(s)
Reptiles/fisiología , Animales , Evolución Biológica , Ecosistema , Extinción Biológica , Cadena Alimentaria , Fósiles , Filogenia
14.
Philos Trans R Soc Lond B Biol Sci ; 375(1793): 20190143, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31928196

RESUMEN

The histology of sauropod long bones often appears uniform and conservative along their evolutionary tree. One of the main aspects of their bone histology is to exhibit a fibrolamellar complex in the cortex of their long bones. Here, we report another bone tissue, the radial fibrolamellar bone (RFB), in the outer cortex of the humeri of a young adult cf. Isanosaurus (Early to Late Jurassic, Thailand) and an adult Spinophorosaurus nigerensis (Early to Middle Jurassic, Niger) that do not exhibit any pathological feature on the bone surface. Its location within the cortex is unexpected, because RFB is a rapidly deposited bone tissue that would rather be expected early in the ontogeny. A palaeopathological survey was conducted for these sampled specimens. Observed RFB occurrences are regarded as spiculated periosteal reactive bone, which is an aggressive form of periosteal reaction. A 'hair-on-end' pattern of neoplasmic origin (resembling a Ewing's sarcoma) is favoured for cf. Isanosaurus, while a sunburst pattern of viral or neoplasmic origin (resembling an avian osteopetrosis or haemangioma) is favoured for Spinophorosaurus. This study highlights the importance of bone histology in assessing the frequency and nature of palaeopathologies. This article is part of the theme issue 'Vertebrate palaeophysiology'.


Asunto(s)
Evolución Biológica , Huesos/patología , Dinosaurios/anatomía & histología , Húmero/patología , Animales , Fósiles/patología , Filogenia
15.
PeerJ ; 6: e4594, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29666758

RESUMEN

Modern marine turtles (chelonioids) are the remnants of an ancient radiation that roots in the Cretaceous. The oldest members of that radiation are first recorded from the Early Cretaceous and a series of species are known from the Albian-Cenomanian interval, many of which have been allocated to the widespread but poorly defined genus Rhinochelys, possibly concealing the diversity and the evolution of early marine turtles. In order to better understand the radiation of chelonioids, we redescribe the holotype and assess the taxonomy of Rhinochelys amaberti Moret (1935) (UJF-ID.11167) from the Late Albian (Stoliczkaia dispar Zone) of the Vallon de la Fauge (Isère, France). We also make preliminary assessments of the phylogenetic relationships of Chelonioidea using two updated datasets that widely sample Cretaceous taxa, especially Rhinochelys. Rhinochelys amaberti is a valid taxon that is supported by eight autapomorphies; an emended diagnosisis proposed. Our phylogenetic analyses suggest that Rhinochelys could be polyphyletic, but constraining it as a monophyletic entity does not produce trees that are significantly less parsimonious. Moreover, support values and stratigraphic congruence indexes are fairly low for the recovered typologies, suggesting that missing data still strongly affect our understanding of the Cretaceous diversification of sea turtles.

16.
Curr Biol ; 27(11): 1667-1676.e3, 2017 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-28552354

RESUMEN

Plesiosaurs were the longest-surviving group of secondarily marine tetrapods, comparable in diversity to today's cetaceans. During their long evolutionary history, which spanned the Jurassic and the Cretaceous (201 to 66 Ma), plesiosaurs repeatedly evolved long- and short-necked body plans [1, 2]. Despite this postcranial plasticity, short-necked plesiosaur clades have traditionally been regarded as being highly constrained to persistent and clearly distinct ecological niches: advanced members of Pliosauridae (ranging from the Middle Jurassic to the early Late Cretaceous) have been characterized as apex predators [2-5], whereas members of the distantly related clade Polycotylidae (middle to Late Cretaceous) were thought to have been fast-swimming piscivores [1, 5-7]. We report a new, highly unusual pliosaurid from the Early Cretaceous of Russia that shows close convergence with the cranial structure of polycotylids: Luskhan itilensis gen. et sp. nov. Using novel cladistic and ecomorphological data, we show that pliosaurids iteratively evolved polycotylid-like cranial morphologies from the Early Jurassic until the Early Cretaceous. This underscores the ecological diversity of derived pliosaurids and reveals a more complex evolutionary history than their iconic representation as gigantic apex predators of Mesozoic marine ecosystems suggests. Collectively, these data demonstrate an even higher degree of morphological plasticity and convergence in the evolution of plesiosaurs than previously thought and suggest the existence of an optimal ecomorphology for short-necked piscivorous plesiosaurs through time and across phylogeny.


Asunto(s)
Organismos Acuáticos/fisiología , Dinosaurios/fisiología , Fósiles/anatomía & histología , Filogenia , Animales , Evolución Biológica , Dinosaurios/anatomía & histología , Ecología , Extinción Biológica , Cuello/anatomía & histología , Federación de Rusia , Cráneo/anatomía & histología , Especificidad de la Especie
17.
PeerJ ; 4: e2604, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27781178

RESUMEN

A complex and confusing taxonomy has concealed the diversity dynamics of Cretaceous ichthyosaurs (Reptilia) for decades. The near totality of Albian-Cenomanian remains from Eurasia has been assigned, by default, to the loosely defined entity Platypterygius campylodon, whose holotype was supposed to be lost. By thoroughly examining the Cenomanian ichthyosaur collections from the UK, I redescribe the syntypic series of Platypterygius campylodon. This material, along with a handful of other coeval remains, is diagnostic and seemingly differs from the vast majority of Cretaceous remains previously assigned to this taxon. A lectotype for Platypterygius campylodon is designated and I reassign this species to Pervushovisaurus campylodon nov. comb. The feeding ecology of this species is assessed and conforms to the scenario of an early Cenomanian diversity drop prior to the latest Cenomanian final extinction.

18.
Nat Commun ; 7: 10825, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26953824

RESUMEN

Despite their profound adaptations to the aquatic realm and their apparent success throughout the Triassic and the Jurassic, ichthyosaurs became extinct roughly 30 million years before the end-Cretaceous mass extinction. Current hypotheses for this early demise involve relatively minor biotic events, but are at odds with recent understanding of the ichthyosaur fossil record. Here, we show that ichthyosaurs maintained high but diminishing richness and disparity throughout the Early Cretaceous. The last ichthyosaurs are characterized by reduced rates of origination and phenotypic evolution and their elevated extinction rates correlate with increased environmental volatility. In addition, we find that ichthyosaurs suffered from a profound Early Cenomanian extinction that reduced their ecological diversity, likely contributing to their final extinction at the end of the Cenomanian. Our results support a growing body of evidence revealing that global environmental change resulted in a major, temporally staggered turnover event that profoundly reorganized marine ecosystems during the Cenomanian.


Asunto(s)
Organismos Acuáticos/genética , Evolución Biológica , Ecosistema , Reptiles/genética , Animales , Organismos Acuáticos/clasificación , Biodiversidad , Fósiles , Filogenia , Reptiles/clasificación
19.
R Soc Open Sci ; 2(12): 150552, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27019740

RESUMEN

During the Middle and Late Jurassic, pliosaurid plesiosaurs evolved gigantic body size and a series of craniodental adaptations that have been linked to the occupation of an apex predator niche. Cretaceous pliosaurids (i.e. Brachaucheninae) depart from this morphology, being slightly smaller and lacking the macrophagous adaptations seen in earlier forms. However, the fossil record of Early Cretaceous pliosaurids is poor, concealing the evolution and ecological diversity of the group. Here, we report a new pliosaurid from the Late Hauterivian (Early Cretaceous) of Russia. Phylogenetic analyses using reduced consensus methods recover it as the basalmost brachauchenine. This pliosaurid is smaller than other derived pliosaurids, has tooth alveoli clustered in pairs and possesses trihedral teeth with complex serrated carinae. Maximum-likelihood ancestral state reconstruction suggests early brachauchenines retained trihedral teeth from their ancestors, but modified this feature in a unique way, convergent with macrophagous archosaurs or sphenacodontoids. Our findings indicate that Early Cretaceous marine reptile teeth with serrated carinae cannot be unequivocally assigned to metriorhynchoid crocodylomorphs. Furthermore, they extend the known diversity of dental adaptations seen in Sauropterygia, the longest lived clade of marine tetrapods.

20.
Naturwissenschaften ; 101(12): 1027-40, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25256640

RESUMEN

Mesozoic marine reptiles went through a severe turnover near the end of the Triassic. Notably, an important extinction event affected ichthyosaurs, sweeping a large part of the group. This crisis is, however, obscured by an extremely poor fossil record and is regarded as protracted over the entire Norian-earliest Jurassic interval, for the lack of a more precise scenario. The iconic whale-sized shastasaurid ichthyosaurs are regarded as early victims of this turnover, disappearing by the middle Norian. Here we evaluate the pattern of this turnover among ichthyosaurs by analysing the faunal record of two Rhaetian localities. One locality is Autun, eastern France; we rediscovered in this material the holotypes or partial 'type' series of Rachitrema pellati, Actiosaurus gaudryi, Ichthyosaurus rheticus, Ichthyosaurus carinatus and Plesiosaurus bibractensis; a revised taxonomic scheme is proposed. The second assemblage comes from a new locality: Cuers, southeastern France. Both these assemblages provide several lines of evidence for the presence of shastasaurid-like ichthyosaurs in the Rhaetian of Europe. These occurrences suggest that both the demise of shastasaurids and the sudden radiation of neoichthyosaurians occurred within a short time window; this turnover appears not only more abrupt but also more complex than previously postulated and adds a new facet of the end-Triassic mass extinction.


Asunto(s)
Extinción Biológica , Fósiles , Reptiles/anatomía & histología , Animales , Huesos/anatomía & histología , Francia , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA