Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Pathog ; 186: 106482, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38086442

RESUMEN

BACKGROUND: Shiga toxin-producing Escherichia coli is the main cause of post-diarrheal hemolytic uremic syndrome (HUS) which produces acute kidney injury mainly in children, although it can also affect adults. The kidneys are the organs most affected by Shiga toxin type 2 (Stx2) in patients with HUS. However, previous studies in pregnant rats showed that a sublethal dose of Stx2 causes severe damage in the uteroplacental unit and induces abortion, whereas produces mild to moderate renal damage. The aim of the present work was to study the progression of renal injury caused by a sublethal dose of Stx2, as well as renal recovery, in pregnant and non-pregnant rats, and to investigate whether pregnancy physiology may affect renal damage progression mediated by Stx2. METHODS: Renal function and histopathology was evaluated in pregnant rats intraperitoneally injected with a sublethal dose of Stx2 (0.5 ng/g bwt) at the early stage of gestation (day 8 of gestation), and results in these rats were compared over time with those observed in non-pregnant female rats injected with the same Stx2 dose. Hence, progression of cell proliferation and dedifferentiation in renal tubular epithelia was also investigated. RESULTS: The sublethal dose of Stx2 induced abortion in pregnant rats as well as a significant more extended functional and histological renal injury in non-pregnant rats than in pregnant rats. Stx2 also caused decreased ability to concentrate urine in non-pregnant rats compared to their controls. However, renal water handling in pregnant rats was not altered by Stx2, and was significantly different than in non-pregnant rats. The greatest renal injury in both pregnant and non-pregnant rats was observed at 4 days post-Stx2 injection, and coincided with a significant increase in tubular epithelial proliferation. Expression of mesenchymal marker vimentin in tubular epithelia was consistent with the level of tubular damage, being higher in non-pregnant rats than in pregnant rats. Recovery from Stx2-induced kidney injury was faster in pregnant rats than in non-pregnant rats. CONCLUSIONS: Adaptive mechanisms developed during pregnancy such as changes in water handle and renal hemodynamic may contribute to lessen the Stx2-induced renal injury, perhaps at the expense of fetal loss.


Asunto(s)
Síndrome Hemolítico-Urémico , Escherichia coli Shiga-Toxigénica , Humanos , Embarazo , Niño , Adulto , Ratas , Femenino , Animales , Toxina Shiga II/toxicidad , Riñón/patología , Síndrome Hemolítico-Urémico/patología , Agua , Regeneración
2.
Pediatr Res ; 91(5): 1121-1129, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34155339

RESUMEN

BACKGROUND: Shiga toxin-producing Escherichia coli is responsible for post-diarrheal (D+) hemolytic uremic syndrome (HUS), which is a cause of acute renal failure in children. The glycolipid globotriaosylceramide (Gb3) is the main receptor for Shiga toxin (Stx) in kidney target cells. Eliglustat (EG) is a specific and potent inhibitor of glucosylceramide synthase, first step of glycosphingolipid biosynthesis, actually used for the treatment of Gaucher's disease. The aim of the present work was to evaluate the efficiency of EG in preventing the damage caused by Stx2 in human renal epithelial cells. METHODS: Human renal tubular epithelial cell (HRTEC) primary cultures were pre-treated with different dilutions of EG followed by co-incubation with EG and Stx2 at different times, and cell viability, proliferation, apoptosis, tubulogenesis, and Gb3 expression were assessed. RESULTS: In HRTEC, pre-treatments with 50 nmol/L EG for 24 h, or 500 nmol/L EG for 6 h, reduced Gb3 expression and totally prevented the effects of Stx2 on cell viability, proliferation, and apoptosis. EG treatment also allowed the development of tubulogenesis in 3D-HRTEC exposed to Stx2. CONCLUSIONS: EG could be a potential therapeutic drug for the prevention of acute kidney injury caused by Stx2. IMPACT: For the first time, we have demonstrated that Eliglustat prevents Shiga toxin 2 cytotoxic effects on human renal epithelia, by reducing the expression of the toxin receptor globotriaosylceramide. The present work also shows that Eliglustat prevents Shiga toxin 2 effects on tubulogenesis of renal epithelial cells. Eliglustat, actually used for the treatment of patients with Gaucher's disease, could be a therapeutic strategy to prevent the renal damage caused by Shiga toxin.


Asunto(s)
Enfermedad de Gaucher , Toxina Shiga II , Células Cultivadas , Niño , Células Epiteliales/metabolismo , Enfermedad de Gaucher/metabolismo , Humanos , Pirrolidinas , Toxina Shiga/metabolismo , Toxina Shiga II/metabolismo , Toxina Shiga II/toxicidad
3.
Biochem Biophys Res Commun ; 512(2): 170-175, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30879772

RESUMEN

This work was aimed to determine the effect of 17ß-estradiol (17ßE) on cell proliferation in human renal tubular epithelial cells (HRTEC) isolated from kidneys from pediatric subjects, as well as the role of estrogen receptors involved in the 17ßE proliferative response. Treatment with 17ßE (10 nmol/L, 24 h) significantly stimulated cell proliferation, measured by 5-bromo-2-deoxyuridine (BrdU) uptake, in HRTEC primary cultures and in tubular structures obtained by 3D cultured-HRTEC. Incubation of HRTEC with the G protein-coupled estrogen receptor 1 (GPER-1) agonist G-1 increased BrdU uptake. Incubation of HRTEC with 17ßE activated the classic estrogen receptor alpha (ERα) but not ERß. Treatment of HRTEC with the GPER-1 antagonist G-15, the ER inhibitor ICI182,780, or the ß-catenin inhibitor iCRT14, completely abrogated the increase in BrdU uptake induced by 17ßE. We also show that 17ßE stimulated ß-catenin protein expression and translocation to the nucleus of HRTEC, effects that were abrogated by G-15 and ICI 182,780. In conclusion, estradiol stimulates cell proliferation in HRTEC primary cultures through both ERα and GPER-1 estrogen receptors and involves ß-catenin activation.


Asunto(s)
Estradiol/metabolismo , Receptor alfa de Estrógeno/metabolismo , Túbulos Renales/citología , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proliferación Celular , Células Cultivadas , Niño , Células Epiteliales/citología , Células Epiteliales/metabolismo , Humanos , Túbulos Renales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...