Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Microbiol Spectr ; 12(2): e0154923, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38193689

RESUMEN

The partial or complete loss of the sense of smell, which affects about 20% of the population, impairs the quality of life in many ways. Dysosmia and anosmia are mainly caused by aging, trauma, infections, or even neurodegenerative disease. Recently, the olfactory area-a site containing the olfactory receptor cells responsible for odor perception-was shown to harbor a complex microbiome that reflects the state of olfactory function. This initially observed correlation between microbiome composition and olfactory performance needed to be confirmed using a larger study cohort and additional analyses. A total of 120 participants (middle-aged, no neurodegenerative disease) were enrolled in the study to further analyze the microbial role in human olfactory function. Olfactory performance was assessed using the Sniffin' Stick battery, and participants were grouped accordingly (normosmia: n = 93, dysosmia: n = 27). The olfactory microbiome was analyzed by 16S rRNA gene amplicon sequencing and supplemented by metatranscriptomics in a subset (Nose 2.0). Propidium monoazide (PMA) treatment was performed to distinguish between intact and non-intact microbiome components. The gastrointestinal microbiome of these participants was also characterized by amplicon sequencing and metabolomics and then correlated with food intake. Our results confirm that normosmics and dysosmics indeed possess a distinguishable olfactory microbiome. Alpha diversity (i.e., richness) was significantly increased in dysosmics, reflected by an increase in the number of specific taxa (e.g., Rickettsia, Spiroplasma, and Brachybacterium). Lower olfactory performance was associated with microbial signatures from the oral cavity and periodontitis (Fusobacterium, Porphyromonas, and Selenomonas). However, PMA treatment revealed a higher accumulation of dead microbial material in dysosmic subjects. The gastrointestinal microbiome partially overlapped with the nasal microbiome but did not show substantial variation with respect to olfactory performance, although the diet of dysosmic individuals was shifted toward a higher meat intake. Dysosmia is associated with a higher burden of dead microbial material in the olfactory area, indicating an impaired clearance mechanism. As the microbial community of dysosmics (hyposmics and anosmics) appears to be influenced by the oral microbiome, further studies should investigate the microbial oral-nasal interplay in individuals with partial or complete olfactory loss.IMPORTANCEThe loss of the sense of smell is an incisive event that is becoming increasingly common in today's world due to infections such as COVID-19. Although this loss usually recovers a few weeks after infection, in some cases, it becomes permanent-why is yet to be answered. Since this condition often represents a psychological burden in the long term, there is a need for therapeutic approaches. However, treatment options are limited or even not existing. Understanding the role of the microbiome in the impairment of olfaction may enable the prediction of olfactory disorders and/or could serve as a possible target for therapeutic interventions.


Asunto(s)
Enfermedades Neurodegenerativas , Trastornos del Olfato , Persona de Mediana Edad , Humanos , Olfato/fisiología , Anosmia/complicaciones , Calidad de Vida , ARN Ribosómico 16S/genética , Enfermedades Neurodegenerativas/complicaciones , Trastornos del Olfato/complicaciones
2.
Front Psychol ; 14: 1196707, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37794918

RESUMEN

The ability to plan is an important part of the set of the cognitive skills called "executive functions." To be able to plan actions in advance is of great importance in everyday life and constitutes one of the major key features for academic as well as economic success. The present study aimed to investigate the neuroanatomical correlates of planning in normally developing children, as measured by the cortical thickness of the prefrontal cortex. Eighteen healthy children and adolescents underwent structural MRI examinations and the Tower of London (ToL) task. A multiple regression analysis revealed that the cortical thickness of the right caudal middle frontal gyrus (cMFG) was a significant predictor of planning performance. Neither the cortical thickness of any other prefrontal area nor gender were significantly associated with performance in the ToL task. The results of the present exploratory study suggest that the cortical thickness of the right, but not the left cMFG, is positively correlated with performance in the ToL task. We, therefore, conclude that increased cortical thickness may be more beneficial for higher-order processes, such as information integration, than for lower-order processes, such as the analysis of external information.

3.
PLoS One ; 18(6): e0278496, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37279254

RESUMEN

Although emotion and olfaction are closely linked, only a few studies have investigated olfactory processing in alexithymia, a condition characterized by altered emotional processing. These results do not allow comprehensive conclusions on whether individuals with alexithymia present lower olfactory abilities or only altered affective reactions and awareness of odors. Three pre-registered experiments were conducted to clarify this relation. We assessed olfactory functions, the affective qualities of odors, the awareness of odors, the attitudes towards them, and the ability to form olfactory images in the mind. Bayesian statistics were used to assess differences between low, medium and high alexithymia groups, and Linear Mixed Models (LMMs) were applied to investigate the modulation of the affective and cognitive components of alexithymia. We observed that individuals with a high level of alexithymia presented the same olfactory abilities, and did not show differences in their rating of odors compared to individuals with low alexithymia levels, while they reported lower levels of social and common odor awareness and a more indifferent attitude towards odors. Olfactory imagery was not affected by alexithymia level, and the affective and cognitive components of alexithymia, when considered separately, modulated olfactory perception differently. Learning more about olfactory perception in individuals with alexithymia leads to a better understanding of how alexithymia impacts the perception of hedonic stimuli coming from different sensory modalities. Our results imply that treatment goals for alexithymia should be the enhancement of the conscious perception of odors, supporting the use of mindfulness-based protocols in the alexithymia treatment.


Asunto(s)
Percepción Olfatoria , Olfato , Humanos , Odorantes , Síntomas Afectivos/psicología , Teorema de Bayes , Actitud
4.
Commun Biol ; 6(1): 109, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36707693

RESUMEN

In most humans, the superior temporal sulcus (STS) shows a rightward depth asymmetry. This asymmetry can not only be observed in adults, but is already recognizable in the fetal brain. As the STS lies adjacent to brain areas important for language, STS depth asymmetry may represent an anatomical marker for language abilities. This study investigated the prognostic value of STS depth asymmetry in healthy fetuses for later language abilities, language localization, and language-related white matter tracts. Less right lateralization of the fetal STS depth was significantly associated with better verbal abilities, with fetal STS depth asymmetry explaining more than 40% of variance in verbal skills 6-13 years later. Furthermore, less right fetal STS depth asymmetry correlated with increased left language localization during childhood. We hypothesize that earlier and/or more localized fetal development of the left temporal cortex is accompanied by an earlier development of the left STS and is favorable for early language learning. If the findings of this pilot study hold true in larger samples of healthy children and in different clinical populations, fetal STS asymmetry has the potential to become a diagnostic biomarker of the maturity and integrity of neural correlates of language.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Adulto , Niño , Humanos , Proyectos Piloto , Pronóstico , Lóbulo Temporal/diagnóstico por imagen , Desarrollo del Lenguaje , Feto
5.
Epilepsia ; 64(3): 705-717, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36529714

RESUMEN

OBJECTIVE: Anterior temporal lobectomy (ATL) and transsylvian selective amygdalohippocampectomy (tsSAHE) are effective treatment strategies for intractable temporal lobe epilepsy but may cause visual field deficits (VFDs) by damaging the optic radiation (OpR). Due to the OpR's considerable variability and because it is indistinguishable from surrounding tissue without further technical guidance, it is highly vulnerable to iatrogenic injury. This imaging study uses a multimodal approach to assess visual outcomes after epilepsy surgery. METHODS: We studied 62 patients who underwent ATL (n = 32) or tsSAHE (n = 30). Analysis of visual outcomes was conducted in four steps, including the assessment of (1) perimetry outcome (VFD incidence/extent, n = 44/40), (2) volumetric OpR tractography damage (n = 55), and the (3) relation of volumetric OpR tractography damage and perimetry outcome (n = 35). Furthermore, (4) fixel-based analysis (FBA) was performed to assess micro- and macrostructural changes within the OpR following surgery (n = 36). RESULTS: Altogether, 56% of all patients had postoperative VFDs (78.9% after ATL, 36.36% after tsSAHE, p = .011). VFDs and OpR tractography damage tended to be more severe within the ATL group (ATL vs. tsSAHE, integrity of contralateral upper quadrant: 65% vs. 97%, p = .002; OpR tractography damage: 69.2 mm3 vs. 3.8 mm3 , p = .002). Volumetric OpR tractography damage could reliably predict VFD incidence (86% sensitivity, 78% specificity) and could significantly explain VFD extent (R2  = .47, p = .0001). FBA revealed a more widespread decline of fibre cross-section within the ATL group. SIGNIFICANCE: In the context of controversial visual outcomes following epilepsy surgery, this study provides clinical as well as neuroimaging evidence for a higher risk and greater severity of postoperative VFDs after ATL compared to tsSAHE. Volumetric OpR tractography damage is a feasible parameter to reliably predict this morbidity in both treatment groups and may ultimately support personalized planning of surgical candidates. Advanced diffusion analysis tools such as FBA offer a structural explanation of surgically induced visual pathway damage, allowing noninvasive quantification and visualization of micro- and macrostructural tract affection.


Asunto(s)
Lobectomía Temporal Anterior , Epilepsia del Lóbulo Temporal , Humanos , Lobectomía Temporal Anterior/métodos , Trastornos de la Visión/etiología , Epilepsia del Lóbulo Temporal/cirugía , Campos Visuales , Neuroimagen , Resultado del Tratamiento , Hipocampo/cirugía
7.
Biol Psychol ; 173: 108406, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35952864

RESUMEN

Regular exercise improves cognitive control abilities and successful self-regulation of physical activity. However, it is not clear whether exercising also improves the ability to self-regulate one's own brain activity. We investigated this in 26 triathletes and 25 control participants who did not exercise regularly. Within each group half of the participants performed one session of sensorimotor rhythm (SMR, 12-15 Hz) upregulation neurofeedback training, the other half received a sham neurofeedback training. The neurofeedback training session took about 45 min. In a separate session, participants underwent structural magnetic resonance imaging (MRI) to investigate possible differences in brain structure between triathletes and controls. Triathletes and controls were able to voluntarily upregulate their SMR activity during neurofeedback when receiving real feedback. Triathletes showed a stronger increase in SMR activity in the second half of the training compared to controls, suggesting that triathletes are able to self-regulate their own brain activity over a longer period of time. Further, triathletes and controls showed differences in brain structure as reflected by larger gray and white matter volumes in the inferior frontal gyrus and insula compared to controls. These brain areas are generally involved in cognitive control mechanisms. Our results provide new evidence regarding self-regulation abilities of people who exercise regularly and might impact the practical application of neurofeedback.


Asunto(s)
Neurorretroalimentación , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico/métodos , Ejercicio Físico , Humanos , Imagen por Resonancia Magnética/métodos , Neurorretroalimentación/fisiología
8.
Trials ; 23(1): 545, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35790976

RESUMEN

BACKGROUND: Anorexia nervosa (AN) is a severe psychiatric disease that often takes a chronic course due to insufficient treatment options. Emerging evidence on the gut-brain axis offers the opportunity to find innovative treatments for patients with psychiatric disorders. The gut microbiome of patients with AN shows profound alterations that do not completely disappear after weight rehabilitation. In previous studies, the administration of polyunsaturated fatty acids (PUFA) resulted in effects that might be beneficial in the treatment of AN, affecting the microbiome, body weight and executive functions. Therefore, the MiGBAN study aims to examine the effects of a nutritional supplementation with PUFA on the gut microbiome and body mass index (BMI) in patients with AN. METHODS: This is a longitudinal, double-blind, randomized, placebo-controlled trial. Within 2 years, 60 adolescent patients aged 12 to 19 years with AN will receive either PUFA or placebo for 6 months additional to treatment as usual. After 1 year, the long-term effect of PUFA on the gut microbiome and consecutively on BMI will be determined. Secondary outcomes include improvement of gastrointestinal symptoms, eating disorder psychopathology, and comorbidities. Additionally, the interaction of the gut microbiome with the brain (microbiome-gut-brain axis) will be studied by conducting MRI measurements to assess functional and morphological changes and neuropsychological assessments to describe cognitive functioning. Anti-inflammatory effects of PUFA in AN will be examined via serum inflammation and gut permeability markers. Our hypothesis is that PUFA administration will have positive effects on the gut microbiota and thus the treatment of AN by leading to a faster weight gain and a reduction of gastrointestinal problems and eating disorder psychopathology. DISCUSSION: Due to previously heterogeneous results, a systematic and longitudinal investigation of the microbiome-gut-brain axis in AN is essential. The current trial aims to further analyse this promising research field to identify new, effective therapeutic tools that could help improve the treatment and quality of life of patients. If this trial is successful and PUFA supplementation contributes to beneficial microbiome changes and a better treatment outcome, their administration would be a readily applicable additional component of multimodal AN treatment. TRIAL REGISTRATION: German Clinical Trials Register DRKS00017130 . Registered on 12 November 2019.


Asunto(s)
Anorexia Nerviosa , Microbiota , Adolescente , Anorexia Nerviosa/diagnóstico , Anorexia Nerviosa/tratamiento farmacológico , Eje Cerebro-Intestino , Ácidos Grasos Insaturados , Humanos , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto
9.
Front Syst Neurosci ; 16: 885304, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35707745

RESUMEN

Ecological chemosensory stimuli almost always evoke responses in more than one sensory system. Moreover, any sensory processing takes place along a hierarchy of brain regions. So far, the field of chemosensory neuroimaging is dominated by studies that examine the role of brain regions in isolation. However, to completely understand neural processing of chemosensation, we must also examine interactions between regions. In general, the use of connectivity methods has increased in the neuroimaging field, providing important insights to physical sensory processing, such as vision, audition, and touch. A similar trend has been observed in chemosensory neuroimaging, however, these established techniques have largely not been rigorously applied to imaging studies on the chemical senses, leaving network insights overlooked. In this article, we first highlight some recent work in chemosensory connectomics and we summarize different connectomics techniques. Then, we outline specific challenges for chemosensory connectome neuroimaging studies. Finally, we review best practices from the general connectomics and neuroimaging fields. We recommend future studies to develop or use the following methods we perceive as key to improve chemosensory connectomics: (1) optimized study designs, (2) reporting guidelines, (3) consensus on brain parcellations, (4) consortium research, and (5) data sharing.

10.
J Affect Disord ; 308: 259-267, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35429542

RESUMEN

BACKGROUND: Diminished olfactory functioning has been reported in depression, whereas evidence in anxiety disorders is still controversial. Olfactory meta-cognitive abilities (i.e., olfactory awareness, imagery and reactivity, and the importance of odors) are essential in shaping olfaction. Few studies examined these meta-cognitive abilities in relation to depressive, anxiety, and social anxiety symptoms, and none of them considered the awareness of social odors (i.e., body odors). METHODS: This pre-registered study examined the relationship between olfactory meta-cognitive abilities and symptoms of depression, general anxiety, and social anxiety in 429 individuals. Self-report measures of symptoms of depression, general anxiety, and social anxiety, along with self-report olfactory meta-cognitive scales, were collected using an online survey. RESULTS: Linear regression analyses revealed that olfactory awareness and importance of common odors were significantly directly predicted by symptoms of general anxiety, while affective importance to odors was negatively predicted by symptoms of depression. Regarding social odors, higher symptoms of depression and lower symptoms of social anxiety predicted increased awareness. LIMITATIONS: Higher prevalence of women and narrow age range of the participants. Depressive and anxiety symptoms were assessed only with self-report questionnaires. CONCLUSIONS: Symptoms of anxiety seem to be associated with higher levels of common odor awareness, corroborating the importance of olfactory functions in anxiety. In addition, results on social odors seem to reflect dysfunctional social behaviour that characterized symptoms of depression and social anxiety. Hence, the assessment of meta-cognitive abilities may represent a useful tool in the prevention and assessment of depressive, anxiety, and social anxiety symptoms.


Asunto(s)
Metacognición , Olfato , Ansiedad , Trastornos de Ansiedad , Femenino , Humanos , Odorantes
11.
Eur Eat Disord Rev ; 30(1): 61-74, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34851002

RESUMEN

OBJECTIVE: Knowledge on gut-brain interaction might help to develop new therapies for patients with anorexia nervosa (AN), as severe starvation-induced changes of the microbiome (MI) do not normalise with weight gain. We examine the effects of probiotics supplementation on the gut MI in patients with AN. METHOD: This is a study protocol for a two-centre double-blind randomized-controlled trial comparing the clinical efficacy of multistrain probiotic administration in addition to treatment-as-usual compared to placebo in 60 patients with AN (13-19 years). Moreover, 60 sex- and age-matched healthy controls are included in order to record development-related changes. Assessments are conducted at baseline, discharge, 6 and 12 months after baseline. Assessments include measures of body mass index, psychopathology (including eating-disorder-related psychopathology, depression and anxiety), neuropsychological measures, serum and stool analyses. We hypothesise that probiotic administration will have positive effects on the gut microbiota and the treatment of AN by improvement of weight gain, gastrointestinal complaints and psychopathology, and reduction of inflammatory processes compared to placebo. CONCLUSIONS: If probiotics could help to normalise the MI composition, reduce inflammation and gastrointestinal discomfort and increase body weight, its administration would be a readily applicable additional component of multi-modal AN treatment.


Asunto(s)
Anorexia Nerviosa , Microbioma Gastrointestinal , Probióticos , Adolescente , Anorexia Nerviosa/tratamiento farmacológico , Trastornos de Ansiedad , Método Doble Ciego , Humanos , Probióticos/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto
12.
PLoS One ; 16(12): e0260587, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34905551

RESUMEN

The degree of attention individuals pay to olfactory cues (called odor awareness) influences the role of odors in everyday life. Particularly, odors produced by the human body (i.e., social odors) are able to carry a wide variety of information and to elicit a broad spectrum of emotional reactions, making them essential in interpersonal relationships. Hence, despite the assessment of awareness toward social odors is crucial, a proper tool is still lacking. Here, we designed and initially validated the Social Odor Scale (SOS), a 12-item scale designed to measure the individual differences in awareness towards different social odors. In Study 1, an exploratory factor analysis (EFA; KMO test: MSA = 0.78; Bartlett's test: χ2(78) = 631.34, p < 0.001; Chi-squared test: χ2(42) = 71.84, p = 0.003) suggests that the three factors structure was the model that best fit with the Italian version of the scale. The confirmatory factor analysis (CFA) supports a second-order model with one higher-order factor representing social odor awareness in general and three lower-order factors representing familiar, romantic partner, and stranger social odors. The final version of the scale presented a good fit (RMSEA = 0.012, SRMR = 0.069, CFI = 0.998, TLI = 0.997). In Study 2, CFA was performed in the German version of the scale confirming the validity of scale structure. Study 3 and 4 revealed that SOS total score and its subscales were positively correlated with other validated olfactory scales, but not with olfactory abilities. Moreover, SOS was found to be related to the gender of the participants: women reported to be more aware to social odors and, specifically, to familiar social odors than men. Overall, the results indicated that SOS is a valid and reliable instrument to assess awareness toward social odors in everyday life.


Asunto(s)
Relaciones Interpersonales , Odorantes/análisis , Percepción Olfatoria/fisiología , Patrones de Reconocimiento Fisiológico , Olfato/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos de Investigación
13.
Microbiome ; 9(1): 193, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34560884

RESUMEN

BACKGROUND: Methane is an end product of microbial fermentation in the human gastrointestinal tract. This gas is solely produced by an archaeal subpopulation of the human microbiome. Increased methane production has been associated with abdominal pain, bloating, constipation, IBD, CRC or other conditions. Twenty percent of the (healthy) Western populations innately exhale substantially higher amounts (>5 ppm) of this gas. The underlying principle for differential methane emission and its effect on human health is not sufficiently understood. RESULTS: We assessed the breath methane content, the gastrointestinal microbiome, its function and metabolome, and dietary intake of one-hundred healthy young adults (female: n = 52, male: n = 48; mean age =24.1). On the basis of the amount of methane emitted, participants were grouped into high methane emitters (CH4 breath content 5-75 ppm) and low emitters (CH4 < 5 ppm). The microbiomes of high methane emitters were characterized by a 1000-fold increase in Methanobrevibacter smithii. This archaeon co-occurred with a bacterial community specialized on dietary fibre degradation, which included members of Ruminococcaceae and Christensenellaceae. As confirmed by metagenomics and metabolomics, the biology of high methane producers was further characterized by increased formate and acetate levels in the gut. These metabolites were strongly correlated with dietary habits, such as vitamin, fat and fibre intake, and microbiome function, altogether driving archaeal methanogenesis. CONCLUSIONS: This study enlightens the complex, multi-level interplay of host diet, genetics and microbiome composition/function leading to two fundamentally different gastrointestinal phenotypes and identifies novel points of therapeutic action in methane-associated disorders. Video Abstract.


Asunto(s)
Metano , Methanobrevibacter , Adulto , Animales , Femenino , Formiatos , Tracto Gastrointestinal , Humanos , Masculino , Metagenómica , Methanobrevibacter/genética , Rumen , Adulto Joven
14.
Brain Struct Funct ; 226(3): 701-713, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33496825

RESUMEN

The present study is interested in the role of the corpus callosum in the development of the language network. We, therefore, investigated language abilities and the language network using task-based fMRI in three cases of complete agenesis of the corpus callosum (ACC), three cases of partial ACC and six controls. Although the children with complete ACC revealed impaired functions in specific language domains, no child with partial ACC showed a test score below average. As a group, ACC children performed significantly worse than healthy controls in verbal fluency and naming. Furthermore, whole-brain ROI-to-ROI connectivity analyses revealed reduced intrahemispheric and right intrahemispheric functional connectivity in ACC patients as compared to controls. In addition, stronger functional connectivity between left and right temporal areas was associated with better language abilities in the ACC group. In healthy controls, no association between language abilities and connectivity was found. Our results show that ACC is associated not only with less interhemispheric, but also with less right intrahemispheric language network connectivity in line with reduced verbal abilities. The present study, thus, supports the excitatory role of the corpus callosum in functional language network connectivity and language abilities.


Asunto(s)
Cognición/fisiología , Cuerpo Calloso/fisiología , Lateralidad Funcional/fisiología , Lenguaje , Adolescente , Agenesia del Cuerpo Calloso/fisiopatología , Niño , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino
15.
Chem Senses ; 462021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33367502

RESUMEN

In a preregistered, cross-sectional study, we investigated whether olfactory loss is a reliable predictor of COVID-19 using a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n = 4148) or negative (C19-; n = 546) COVID-19 laboratory test outcome. Logistic regression models identified univariate and multivariate predictors of COVID-19 status and post-COVID-19 olfactory recovery. Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean ± SD, C19+: -82.5 ± 27.2 points; C19-: -59.8 ± 37.7). Smell loss during illness was the best predictor of COVID-19 in both univariate and multivariate models (ROC AUC = 0.72). Additional variables provide negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms (e.g., fever). Olfactory recovery within 40 days of respiratory symptom onset was reported for ~50% of participants and was best predicted by time since respiratory symptom onset. We find that quantified smell loss is the best predictor of COVID-19 amongst those with symptoms of respiratory illness. To aid clinicians and contact tracers in identifying individuals with a high likelihood of having COVID-19, we propose a novel 0-10 scale to screen for recent olfactory loss, the ODoR-19. We find that numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (4 < OR < 10). Once independently validated, this tool could be deployed when viral lab tests are impractical or unavailable.


Asunto(s)
Anosmia/diagnóstico , COVID-19/diagnóstico , Adulto , Anosmia/etiología , COVID-19/complicaciones , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , SARS-CoV-2/aislamiento & purificación , Autoinforme , Olfato
16.
Dev Sci ; 24(2): e13031, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32790079

RESUMEN

The specific role of the corpus callosum (CC) in language network organization remains unclear, two contrasting models have been proposed: inhibition of homotopic areas allowing for independent functioning of the hemispheres versus integration of information from both hemispheres. This study aimed to add to this discussion with the first investigation of language network connectivity in combination with CC volume measures. In 38 healthy children aged 6-12, we performed task-based functional magnetic resonance imaging to measure language network connectivity, used structural magnetic resonance imaging to quantify CC subsection volumes, and administered various language tests to examine language abilities. We found an increase in left intrahemispheric and bilateral language network connectivity and a decrease in right intrahemispheric connectivity associated with larger volumes of the posterior, mid-posterior, and central subsections of the CC. Consistent with that, larger volumes of the posterior parts of the CC were significantly associated with better verbal fluency and vocabulary, the anterior CC volume was positively correlated with verbal span. Thus, children with larger volumes of CC subsections showed increased interhemispheric language network connectivity and were better in different language domains. This study presents the first evidence that the CC is directly linked to language network connectivity and underlines the excitatory role of the CC in the integration of information from both hemispheres.


Asunto(s)
Cuerpo Calloso , Lenguaje , Niño , Humanos , Imagen por Resonancia Magnética , Vías Nerviosas
17.
medRxiv ; 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32743605

RESUMEN

BACKGROUND: COVID-19 has heterogeneous manifestations, though one of the most common symptoms is a sudden loss of smell (anosmia or hyposmia). We investigated whether olfactory loss is a reliable predictor of COVID-19. METHODS: This preregistered, cross-sectional study used a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n=4148) or negative (C19-; n=546) COVID-19 laboratory test outcome. Logistic regression models identified singular and cumulative predictors of COVID-19 status and post-COVID-19 olfactory recovery. RESULTS: Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean±SD, C19+: -82.5±27.2 points; C19-: -59.8±37.7). Smell loss during illness was the best predictor of COVID-19 in both single and cumulative feature models (ROC AUC=0.72), with additional features providing no significant model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms, such as fever or cough. Olfactory recovery within 40 days was reported for ~50% of participants and was best predicted by time since illness onset. CONCLUSIONS: As smell loss is the best predictor of COVID-19, we developed the ODoR-19 tool, a 0-10 scale to screen for recent olfactory loss. Numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (10

18.
Brain Struct Funct ; 225(7): 1997-2015, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32591927

RESUMEN

The ability to generate complex hierarchical structures is a crucial component of human cognition which can be expressed in the musical domain in the form of hierarchical melodic relations. The neural underpinnings of this ability have been investigated by comparing the perception of well-formed melodies with unexpected sequences of tones. However, these contrasts do not target specifically the representation of rules generating hierarchical structure. Here, we present a novel paradigm in which identical melodic sequences are generated in four steps, according to three different rules: The Recursive rule, generating new hierarchical levels at each step; The Iterative rule, adding tones within a fixed hierarchical level without generating new levels; and a control rule that simply repeats the third step. Using fMRI, we compared brain activity across these rules when participants are imagining the fourth step after listening to the third (generation phase), and when participants listened to a fourth step (test sound phase), either well-formed or a violation. We found that, in comparison with Repetition and Iteration, imagining the fourth step using the Recursive rule activated the superior temporal gyrus (STG). During the test sound phase, we found fronto-temporo-parietal activity and hippocampal de-activation when processing violations, but no differences between rules. STG activation during the generation phase suggests that generating new hierarchical levels from previous steps might rely on retrieving appropriate melodic hierarchy schemas. Previous findings highlighting the role of hippocampus and inferior frontal gyrus may reflect processing of unexpected melodic sequences, rather than hierarchy generation per se.


Asunto(s)
Percepción Auditiva/fisiología , Encéfalo/diagnóstico por imagen , Música , Adulto , Encéfalo/fisiología , Mapeo Encefálico , Cognición/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
19.
J Parkinsons Dis ; 10(4): 1587-1600, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32597818

RESUMEN

BACKGROUND: Olfactory dysfunction (OD) is a frequent symptom of Parkinson's disease (PD) that appears years prior to diagnosis. Previous studies suggest that PD-related OD is different from non-parkinsonian forms of olfactory dysfunction (NPOD) as PD patients maintain trigeminal sensitivity as opposed to patients with NPOD who typically exhibit reduced trigeminal sensitivity. We hypothesize the presence of a specific alteration of functional connectivity between trigeminal and olfactory processing areas in PD. OBJECTIVE: We aimed to assess potential differences in functional connectivity within the chemosensory network in 15 PD patients and compared them to 15 NPOD patients, and to 15 controls. METHODS: Functional MRI scanning session included resting-state and task-related scans where participants carried out an olfactory and a trigeminal task. We compared functional connectivity, using a seed-based correlation approach, and brain network modularity of the chemosensory network. RESULTS: PD patients had impaired functional connectivity within the chemosensory network while no such changes were observed for NPOD patients. No group differences we found in modularity of the identified networks. Both patient groups exhibited impaired connectivity when executing an olfactory task, while network modularity was significantly weaker for PD patients than both other groups. When performing a trigeminal task, no changes were found for PD patients, but NPOD patients exhibited impaired connectivity. Conversely, PD patients exhibited a significantly higher network modularity than both other groups. CONCLUSION: In summary, the specific pattern of functional connectivity and chemosensory network recruitment in PD-related OD may explain distinct behavioral chemosensory features in PD when compared to NPOD patients and healthy controls.


Asunto(s)
Conectoma , Red Nerviosa/fisiopatología , Trastornos del Olfato/fisiopatología , Enfermedad de Parkinson/fisiopatología , Neuralgia del Trigémino/fisiopatología , Anciano , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Trastornos del Olfato/diagnóstico por imagen , Trastornos del Olfato/etiología , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Neuralgia del Trigémino/diagnóstico por imagen , Neuralgia del Trigémino/etiología
20.
Front Neurol ; 11: 125, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32174882

RESUMEN

Homuncular organization, i.e., the neuronal representation of the human body within the primary motor cortex, is one of the most fundamental principles of the human brain. Despite this, in rare peripheral nerve surgery patients, the transformation of a monofunctional (diaphragm activation) into a bifunctional motor area (diaphragm and arm activation is controlled by the same cortical area) has previously been demonstrated. The mechanisms behind this transformation are not fully known. To investigate this transformation of a monofunctional area we investigate functional connectivity changes in a unique and highly instructive pathophysiological patient model. These patients suffer from complete brachial plexus avulsion with arm paralysis and had been treated with reconnection of the end of the musculocutaneous nerve to the side of a fully functional phrenic nerve to regain function. Task-based functional connectivity between the arm representations and the diaphragm (phrenic nerve) representations were examined in six patients and 12 aged matched healthy controls at ultra-high field MRI while they either performed or tried isolated elbow flexion or conducted forced abdominal inspiration. Functional connectivity values are considerably increased between the diseased arm and the bilateral diaphragm areas while trying strong muscle tension in the diseased arm as compared to the healthy arm. This effect was not found as compared to the healthy arm in the patient group. This connectivity was stronger between ipsilateral than between corresponding contralateral brain regions. No corresponding differences were found in healthy subjects. Our data suggests that the increased functional connectivity between the deprived arm area and the diaphragm area drives biceps muscle function. From this findings we infer that this new rehabilitative mechanism in the primary motor cortex may establish new intrahemispheric connections within the brain and the motor cortex in particular to reroute the output of a completely denervated motor area. This study extend current knowledge about neuroplasticity within the motor cortex.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...