Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Data Brief ; 29: 105212, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32071987

RESUMEN

This article contains the data of 11 organic substrates including physicochemical, biochemical and nutritional characterisations. Additionally, it includes for all substrates the data of organic matter fractionation into easily biodegradable, slowly biodegradable and inert fractions performed with anaerobic respirometry method. Finally, based on physicochemical characterisations and organic matter fractionation, a detailed methodology for the determination of input state variables required for the anaerobic digestion model N°1 (ADM1) was presented and the dataset for all substrates is provided. An example of calculation for one substrate illustrates the methodology for the determination of these variables. Data provided in this article could be useful to any person interested in modelling anaerobic digestion and particularly co-digestion. Data could be also used for implementation of a database for anaerobic digestion modelling.

2.
Waste Manag ; 80: 119-129, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30454991

RESUMEN

Aerobic pre-treatment of food waste (FW) was performed at different oxygen concentrations (0%, 5%, 10% and 21%O2) and different durations (1, 2, 3 and 4 days) to investigate its impact on biochemical and microbial community characteristics of the waste and its ability to improve anaerobic biodegradability. Whatever the duration, the highest effect of pre-treatment was observed at full aerobic pre-treatment (21%O2) while 5%O2 and 10%O2 showed lower transformation performances. Biochemical variations at 21%O2 were mainly a decrease of simple carbohydrates, volatile fatty acids (VFA) and low molecular weight water soluble compounds and an increase of high weight water soluble compounds. Microbial community analysis showed a clear modification of populations after 21%O2 aerobic pre-treatment, changing from an initial dominance of lactic acid bacteria to a final dominance of VFA consumers (like Acetobacter) and a higher presence of Fungi. Enzymatic tests showed an increase of exoenzymes content and a higher presence of protein and carbohydrates degrading enzymes. Finally, the aerobic pre-treatment did not negatively impact methane potential of FW (496 NLCH4·kgVS-1) which remained unchanged after two days of pre-treatment at 21%O2. These latter optimal pre-treatment conditions are proposed to be tested in future investigation of anaerobic digestion (AD) process with low inoculum to substrate ratio in order to assess their ability to avoid acidification risk during AD of FW.


Asunto(s)
Reactores Biológicos , Alimentos , Anaerobiosis , Ácidos Grasos Volátiles , Metano
3.
Data Brief ; 19: 1953-1962, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30246088

RESUMEN

The data presented in this article regroup characterisation of organic matter and nutritional composition of 42 organic wastes and residues usually used as substrates for anaerobic digestion. Those wastes have different origins from agro-industrial, agricultural and urban sectors in France including: algae, slaughterhouse waste, fat, food waste, fruits and vegetables residues, green waste, slurry, manure, wastewater treatment plant sludge and agricultural residues. The properties of organic matter are distinguished between global parameters (pH, total solids, volatile solids, COD and BMP), organic matter fractionation (biochemical and Van Soest) and the main nutrients content (N, P, K, Mg, Ca and S).

4.
J Environ Manage ; 188: 95-107, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27939694

RESUMEN

In this study, an extensive characterisation of food waste (FW) was performed with the aim of studying the relation between FW characteristics and FW treatability through an anaerobic digestion process. In addition to the typological composition (paper, meat, fruits, vegetables contents, etc) and the physicochemical characteristics, this study provides an original characterisation of microbial populations present in FW. These intrinsic populations can actively participate to aerobic and anaerobic degradation with the presence of Proteobacteria and Firmicutes species for the bacteria and of Ascomycota phylum for the fungi. However, the characterisation of FW bacterial and fungi community shows to be a challenge because of the biases generated by the non-microbial DNA coming from plant and by the presence of mushrooms in the food. In terms of relations, it was demonstrated that some FW characteristics as the density, the volatile solids and the fibres content vary as a function of the typological composition. No direct relationship was demonstrated between the typological composition and the anaerobic biodegradability. However, the Pearson's matrix results reveal that the anaerobic biodegradation potential of FW was highly related to the total chemical oxygen demand (tCOD), the total solid content (TS), the high weight organic matter molecules soluble in water (SOLW>1.5 kDa) and the C/N ratio content. These relations may help predicting FW behaviour through anaerobic digestion process. Finally, this study also showed that the storage of FW before collection, that could induce pre-biodegradation, seems to impact several biochemical characteristics and could improve the biodegradability of FW.


Asunto(s)
Bacterias/metabolismo , Microbiología de Alimentos , Hongos/metabolismo , Residuos de Alimentos , Residuos Sólidos/análisis , Anaerobiosis , Bacterias/clasificación , Biodegradación Ambiental , ADN Bacteriano/genética , ADN de Hongos/genética , Francia , Hongos/clasificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
5.
Waste Manag ; 50: 264-74, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26868845

RESUMEN

In order to determine the variability of food waste (FW) characteristics and the influence of these variable values on the anaerobic digestion (AD) process, FW characteristics from 70 papers were compiled and analysed statistically. Results indicated that FW characteristics values are effectively very variable and that 24% of these variations may be explained by the geographical origin, the type of collection source and the season of the collection. Considering the whole range of values for physicochemical characteristics (especially volatile solids (VS), chemical oxygen demand (COD) and biomethane potential (BMP)), FW show good potential for AD treatment. However, the high carbohydrates contents (36.4%VS) and the low pH (5.1) might cause inhibitions by the rapid acidification of the digesters. As regards the variation of FW characteristics, FW categories were proposed. Moreover, the adequacy of FW characteristics with AD treatment was discussed. Four FW categories were identified with critical characteristics values for AD performance: (1) the high dry matter (DM) and total ammonia nitrogen (TAN) content of FW collected with green waste, (2) the high cellulose (CEL) content of FW from the organic fraction of municipal solid waste, (3) the low carbon-to-nitrogen (C/N) ratio of FW collected during summer, (4) the high value of TAN and Na of FW from Asia. For these cases, an aerobic pre-treatment or a corrective treatment seems to be advised to avoid instabilities along the digestion. Finally, the results of this review-paper provide a data basis of values for FW characteristics that could be used for AD process design and environmental assessment.


Asunto(s)
Alimentos , Residuos de Alimentos , Residuos Sólidos/análisis , Administración de Residuos , Anaerobiosis , Reactores Biológicos , Eliminación de Residuos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA