Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172118

RESUMEN

Photons do not carry sufficient momentum to induce indirect optical transitions in semiconducting materials, such as silicon, necessitating the assistance of lattice phonons to conserve momentum. Compared to direct bandgap semiconductors, this renders silicon a less attractive material for a wide variety of optoelectronic applications. In this work, we introduce an alternative strategy to fulfill the momentum-matching requirement in indirect optical transitions. We demonstrate that when confined to scales below ∼3 nm, photons acquire sufficient momentum to allow electronic transitions at the band edge of Si without the assistance of a phonon. Confined photons allow simultaneous energy and momentum conservation in two-body photon-electron scattering; in effect, converting silicon into a direct bandgap semiconductor. We show that this less-explored concept of light-matter interaction leads to a marked increase in the absorptivity of Si from the UV to the near-IR. The strategy provides opportunities for more efficient use of indirect semiconductors in photovoltaics, energy conversion, light detection, and emission.

2.
J Am Chem Soc ; 146(33): 22881-22886, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39038204

RESUMEN

The complex non-centrosymmetric and chiral nature of helical structures endow materials that possess such motifs with unusual properties. However, despite their ubiquity in biological and organic systems, there is a severe lack of inorganic crystals that display helicity in extended lattices, where these unusual properties are expected to be most pronounced. Here, we report a new inorganic helical structure, gallium sulfur iodide (GaSI), within the exfoliable class of III-VI-VII (1:1:1) one-dimensional (1D) van der Waals (vdW) crystals. Through detailed structural analyses, including single-crystal X-ray diffraction, electron microscopy, and density functional theory (DFT), we elucidate the apparent noncrystallographic screw axis and the first example of an atomic scale helical structure bearing a "squircular" cross-section in GaSI. Crystallizing in the non-centrosymmetric P4̅ space group, we found that GaSI crystals exhibit pronounced second-harmonic generation. From diffuse reflectance spectroscopy, GaSI displays a sizeable bandgap of 3.69 eV, owing tostrong covalent interactions arising from the smaller sulfur atoms within the helix core. These results position GaSI as a promising exfoliable nonlinear optical material across a broad optical window.

3.
Nat Mater ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060470

RESUMEN

Helicity in solids often arises from the precise ordering of cooperative intra- and intermolecular interactions unique to natural, organic or molecular systems. This exclusivity limited the realization of helicity and its ensuing properties in dense inorganic solids. Here we report that Ga atoms in GaSeI, a representative III-VI-VII one-dimensional (1D) van der Waals crystal, manifest the rare Boerdijk-Coxeter helix motif. This motif is a non-repeating geometric pattern characterized by 1D face-sharing tetrahedra whose adjacent vertices are rotated by an irrational angle. Using InSeI and GaSeI, we show that the modularity of 1D van der Waals lattices accommodates the systematic twisting of a periodic tetrahelix with a 41 screw axis in InSeI to an infinitely extending Boerdijk-Coxeter helix in GaSeI. GaSeI crystals are non-centrosymmetric, optically active and exfoliable to a single chain. These results present a materials platform towards understanding the origin and physical manifestation of aperiodic helicity in low-dimensional solids.

4.
ACS Nano ; 18(13): 9557-9565, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38437629

RESUMEN

The nature of enhanced photoemission in disordered and amorphous solids is an intriguing question. A point in case is light emission in porous and nanostructured silicon, a phenomenon that is still not fully understood. In this work, we study structural photoemission in heterogeneous cross-linked silicon glass, a material that represents an intermediate state between the amorphous and crystalline phases, characterized by a narrow distribution of structure sizes. This model system shows a clear dependence of photoemission on size and disorder across a broad range of energies. While phonon-assisted indirect optical transitions are insufficient to describe observable emissions, our experiments suggest these can be understood through electronic Raman scattering instead. This phenomenon, which is not commonly observed in crystalline semiconductors, is driven by structural disorder. We attribute photoemission in this disordered system to the presence of an excess electron density of states within the forbidden gap (Urbach bridge) where electrons occupy trapped states. Transitions from gap states to the conduction band are facilitated through electron-photon momentum matching, which resembles Compton scattering but is observed for visible light and driven by the enhanced momentum of a photon confined within the nanostructured domains. We interpret the light emission in structured silicon glass as resulting from electronic Raman scattering. These findings emphasize the role of photon momentum in the optical response of solids that display disorder on the nanoscale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA