Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Opin Plant Biol ; 62: 102004, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33647828

RESUMEN

The lifecycle of parasitic plants can be divided into pre-attachment and post-attachment phases that equate to free living and parasitic stages. Similarly, plant resistance to parasitic plants can be defined as pre-attachment and post-attachment resistance. Parasitic plants rely on host cues for successful host invasion. During pre-attachment resistance, changes in the composition of host signals can disrupt parasitic plant development and ultimately host invasion. Recent studies have only now begun to elucidate the genetic elements in the host that promote pre-attachment resistance. In comparison, new research points to post-attachment resistance using the common molecular mechanisms utilized by the plant immune system during plant-pathogen interactions. In kind, parasitic plants secrete proteinaceous and RNA-based effectors post-attachment to subvert the host immune system.


Asunto(s)
Inmunidad de la Planta , Plantas , Interacciones Huésped-Parásitos , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Plantas/genética
2.
J Bacteriol ; 201(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30617243

RESUMEN

CvsSR is a Ca2+-induced two-component system (TCS) in the plant pathogen Pseudomonas syringae pv. tomato DC3000. Here, we discovered that CvsSR is induced by Fe3+, Zn2+, and Cd2+ However, only supplementation of Ca2+ to medium resulted in rugose, opaque colonies in ΔcvsS and ΔcvsR strains. This phenotype corresponded to formation of calcium phosphate precipitation on the surface of ΔcvsS and ΔcvsR colonies. CvsSR regulated swarming motility in P. syringae pv. tomato in a Ca2+-dependent manner, but swarming behavior was not influenced by Fe3+, Zn2+, or Cd2+ We hypothesized that reduced swarming displayed by ΔcvsS and ΔcvsR strains was due to precipitation of calcium phosphate on the surface of ΔcvsS and ΔcvsR cells grown on agar medium supplemented with Ca2+ By reducing the initial pH or adding glucose to the medium, calcium precipitation was inhibited, and swarming was restored to ΔcvsS and ΔcvsR strains, suggesting that calcium precipitation influences swarming ability. Constitutive expression of a CvsSR-regulated carbonic anhydrase and a CvsSR-regulated putative sulfate major facilitator superfamily transporter in ΔcvsS and ΔcvsR strains inhibited formation of calcium precipitates and restored the ability of ΔcvsS and ΔcvsR bacteria to swarm. Lastly, we found that glucose inhibited Ca2+-based induction of CvsSR. Hence, CvsSR is a key regulator that controls calcium precipitation on the surface of bacterial cells.IMPORTANCE Bacteria are capable of precipitating and dissolving minerals. We previously reported the characterization of the two-component system CvsSR in the plant-pathogenic bacterium Pseudomonas syringae CvsSR responds to the presence of calcium and is important for causing disease. Here, we show that CvsSR controls the ability of the bacterium to prevent calcium phosphate precipitation on the surface of cells. We also identified a carbonic anhydrase and transporter that modulate formation of surface-associated calcium precipitates. Furthermore, our results demonstrate that the ability of the bacterium to swarm is controlled by the formation and dissolution of calcium precipitates on the surface of cells. Our study describes new mechanisms for microbially induced mineralization and provides insights into the role of mineral deposits on bacterial physiology. The discoveries may lead to new technological and environmental applications.


Asunto(s)
Fosfatos de Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Pseudomonas syringae/enzimología , Pseudomonas syringae/metabolismo , Factores de Transcripción/metabolismo , Cationes Bivalentes/metabolismo , Medios de Cultivo/química , Eliminación de Gen , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , Locomoción , Proteínas de la Membrana/deficiencia , Proteínas Quinasas/deficiencia , Proteínas Quinasas/metabolismo , Factores de Transcripción/deficiencia
3.
Biomacromolecules ; 19(10): 3945-3957, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30160482

RESUMEN

The simultaneous expression in Escherichia coli cells of the Qß virus-like particle (VLP) capsid protein and protein "cargo" tagged with a positively charged Rev peptide sequence leads to the spontaneous self-assembly of VLPs with multiple copies of the cargo inside. We report the packaging of four new enzymes with potential applications in medicine and chemical manufacturing. The captured enzymes are active while inside the nanoparticle shell and are protected from environmental conditions that lead to free-enzyme destruction. We also describe genetic modifications to the packaging scheme that shed light on the self-assembly mechanism of this system and allow indirect control over the internal packaging density of cargo. The technology was extended to create, via self-assembly, VLPs that simultaneously display protein ligands on the exterior and contain enzymes within. Inverse relationships were observed between the size of both the packaged and externally displayed protein or domains and nanoparticle yield. These results provide a general method for the rapid creation of robust protein nanoparticles with desired catalytic and targeting functionalities.


Asunto(s)
Proteínas de la Cápside/metabolismo , Productos del Gen rev/metabolismo , Enzimas Multifuncionales/química , Enzimas Multifuncionales/metabolismo , Nanopartículas/metabolismo , ARN Viral/metabolismo , Ensamble de Virus , Aldehído-Liasas/química , Aldehído-Liasas/genética , Aldehído-Liasas/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Catálisis , Citosina Desaminasa/química , Citosina Desaminasa/genética , Citosina Desaminasa/metabolismo , Productos del Gen rev/química , Productos del Gen rev/genética , Células HeLa , Humanos , Enzimas Multifuncionales/genética , Nanopartículas/química , ARN Viral/química , ARN Viral/genética
4.
Sci Rep ; 8(1): 10156, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29976945

RESUMEN

Microbial biomineralization is a widespread phenomenon. The ability to induce calcium precipitation around bacterial cells has been reported in several Pseudomonas species but has not been thoroughly tested. We assayed 14 Pseudomonas strains representing five different species for the ability to precipitate calcium. Calcium phosphate precipitated adjacent to the colonies of all the Pseudomonas strains tested and also precipitated on the surface of colonies for several of the Pseudomonas strains assayed. The precipitate was commonly precipitated as amorphous calcium phosphate, however seven of the 14 Pseudomonas strains tested precipitated amorphous apatite in agar adjacent to the colonies. Out of the seven Pseudomonas strains that precipitated amorphous apatite, six are plant pathogenic. The formation of amorphous apatite was commonly observed in the area of the agar where amorphous calcium phosphate had previously formed. A transposon mutagenesis screen in Pseudomonas syringae pv. tomato DC3000 revealed genes involved in general metabolism, lipopolysaccharide and cell wall biogenesis, and in regulation of virulence play a role in calcium precipitation. These results shed light on the common ability of Pseudomonas species to perform calcium precipitation and the underlying genetic regulation involved in biomineralization.


Asunto(s)
Fosfatos de Calcio/metabolismo , Precipitación Química , Pseudomonas syringae/genética , Pseudomonas syringae/fisiología , Medios de Cultivo , Genes Bacterianos , Concentración de Iones de Hidrógeno , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/ultraestructura , Pseudomonas putida/genética , Pseudomonas putida/ultraestructura , Pseudomonas syringae/crecimiento & desarrollo , Pseudomonas syringae/ultraestructura , Espectrometría Raman
5.
J Bacteriol ; 200(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29263098

RESUMEN

Two-component systems (TCSs) of bacteria regulate many different aspects of the bacterial life cycle, including pathogenesis. Most TCSs remain uncharacterized, with no information about the signal(s) or regulatory targets and/or role in bacterial pathogenesis. Here, we characterized a TCS in the plant-pathogenic bacterium Pseudomonas syringae pv. tomato DC3000 composed of the histidine kinase CvsS and the response regulator CvsR. CvsSR is necessary for virulence of P. syringae pv. tomato DC3000, since ΔcvsS and ΔcvsR strains produced fewer symptoms than the wild type (WT) and demonstrated reduced growth on multiple hosts. We discovered that expression of cvsSR is induced by Ca2+ concentrations found in leaf apoplastic fluid. Thus, Ca2+ can be added to the list of signals that promote pathogenesis of P. syringae pv. tomato DC3000 during host colonization. Through chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) and global transcriptome analysis (RNA-seq), we discerned the CvsR regulon. CvsR directly activated expression of the type III secretion system regulators, hrpR and hrpS, that regulate P. syringae pv. tomato DC3000 virulence in a type III secretion system-dependent manner. CvsR also indirectly repressed transcription of the extracytoplasmic sigma factor algU and production of alginate. Phenotypic analysis determined that CvsSR inversely regulated biofilm formation, swarming motility, and cellulose production in a Ca2+-dependent manner. Overall, our results show that CvsSR is a key regulatory hub critical for interaction with host plants.IMPORTANCE Pathogenic bacteria must be able to react and respond to the surrounding environment, make use of available resources, and avert or counter host immune responses. Often, these abilities rely on two-component systems (TCSs) composed of interacting proteins that modulate gene expression. We identified a TCS in the plant-pathogenic bacterium Pseudomonas syringae that responds to the presence of calcium, which is an important signal during the plant defense response. We showed that when P. syringae is grown in the presence of calcium, this TCS regulates expression of factors contributing to disease. Overall, our results provide a better understanding of how bacterial pathogens respond to plant signals and control systems necessary for eliciting disease.


Asunto(s)
Proteínas Bacterianas/metabolismo , Calcio/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Pseudomonas syringae/metabolismo , Factor sigma/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Proteínas Bacterianas/genética , Proteínas de Unión al ADN , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/efectos de los fármacos , Pseudomonas syringae/patogenicidad , Factor sigma/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sistemas de Secreción Tipo III/genética , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA