Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSphere ; 8(5): e0032123, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37733353

RESUMEN

A crucial phase in the life cycle of tick-borne pathogens is the time spent colonizing and persisting within the arthropod. Tick immunity is emerging as a key force shaping how transmissible pathogens interact with the vector. How pathogens remain in the tick despite immunological pressure remains unknown. In persistently infected Ixodes scapularis, we found that Borrelia burgdorferi (causative agent of Lyme disease) and Anaplasma phagocytophilum (causative agent of granulocytic anaplasmosis) activate a cellular stress pathway mediated by the endoplasmic reticulum receptor PKR-like ER kinase (PERK) and the central regulatory molecule eIF2α. Disabling the PERK pathway through pharmacological inhibition and RNA interference (RNAi) significantly decreased microbial numbers. In vivo RNAi of the PERK pathway not only reduced the number of A. phagocytophilum and B. burgdorferi colonizing larvae after a bloodmeal but also significantly reduced the number of bacteria that survive the molt. An investigation into PERK pathway-regulated targets revealed that A. phagocytophilum and B. burgdorferi induce activity of the antioxidant response regulator, nuclear factor erythroid 2-related factor 2 (Nrf2). Tick cells deficient for nrf2 expression or PERK signaling showed accumulation of reactive oxygen and nitrogen species in addition to reduced microbial survival. Supplementation with antioxidants rescued the microbicidal phenotype caused by blocking the PERK pathway. Altogether, our study demonstrates that the Ixodes PERK pathway is activated by transmissible microbes and facilitates persistence in the arthropod by potentiating an Nrf2-regulated antioxidant environment. IMPORTANCE Recent advances demonstrate that the tick immune system recognizes and limits the pathogens they transmit. Innate immune mediators such as antimicrobial peptides and reactive oxygen/nitrogen species are produced and restrict microbial survival. It is currently unclear how pathogens remain in the tick, despite this immune assault. We found that an antioxidant response controlled by the PERK branch of the unfolded protein response is activated in ticks that are persistently infected with Borrelia burgdorferi (Lyme disease) or Anaplasma phagocytophilum (granulocytic anaplasmosis). The PERK pathway induces the antioxidant response transcription factor, Nrf2, which coordinates a gene network that ultimately neutralizes reactive oxygen and nitrogen species. Interfering with this signaling cascade in ticks causes a significant decline in pathogen numbers. Given that innate immune products can cause collateral damage to host tissues, we speculate that this is an arthropod-driven response aimed at minimizing damage to "self" that also inadvertently benefits the pathogen. Collectively, our findings shed light on the mechanistic push and pull between tick immunity and pathogen persistence within the arthropod vector.


Asunto(s)
Anaplasma phagocytophilum , Anaplasmosis , Borrelia burgdorferi , Ixodes , Enfermedad de Lyme , Animales , Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ixodes/microbiología , Borrelia burgdorferi/genética , Anaplasma phagocytophilum/genética , Nitrógeno/metabolismo , Oxígeno/metabolismo
2.
bioRxiv ; 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37398437

RESUMEN

A crucial phase in the lifecycle of tick-borne pathogens is the time spent colonizing and persisting within the arthropod. Tick immunity is emerging as a key force shaping how transmissible pathogens interact with the vector. How pathogens remain in the tick despite immunological pressure remains unknown. In persistently infected Ixodes scapularis , we found that Borrelia burgdorferi (Lyme disease) and Anaplasma phagocytophilum (granulocytic anaplasmosis) activate a cellular stress pathway mediated by the endoplasmic reticulum receptor PERK and the central regulatory molecule, eIF2α. Disabling the PERK pathway through pharmacological inhibition and RNAi significantly decreased microbial numbers. In vivo RNA interference of the PERK pathway not only reduced the number of A. phagocytophilum and B. burgdorferi colonizing larvae after a bloodmeal, but also significantly reduced the number of bacteria that survive the molt. An investigation into PERK pathway-regulated targets revealed that A. phagocytophilum and B. burgdorferi induce activity of the antioxidant response regulator, Nrf2. Tick cells deficient for nrf2 expression or PERK signaling showed accumulation of reactive oxygen and nitrogen species in addition to reduced microbial survival. Supplementation with antioxidants rescued the microbicidal phenotype caused by blocking the PERK pathway. Altogether, our study demonstrates that the Ixodes PERK pathway is activated by transmissible microbes and facilitates persistence in the arthropod by potentiating an Nrf2-regulated antioxidant environment.

3.
J Wildl Dis ; 59(1): 37-48, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36648765

RESUMEN

Low lamb recruitment can be an obstacle to bighorn sheep (Ovis canadensis) conservation and restoration. Causes of abortion and neonate loss in bighorn sheep, which may affect recruitment, are poorly understood. Toxoplasma gondii is a major cause of abortion and stillbirth in domestic small ruminants worldwide, but no reports exist documenting abortion or neonatal death in bighorn sheep attributable to toxoplasmosis. Between March 2019 and May 2021, eight fetal and neonatal bighorn lamb cadavers from four western US states (Idaho, Montana, Nebraska, and Washington) were submitted to the Washington Animal Disease Diagnostic Laboratory for postmortem examination, histologic examination, and ancillary testing to determine the cause of abortion or neonatal death. Necrotizing encephalitis characteristic of toxoplasmosis was identified histologically in six of eight cases, and T. gondii infection was confirmed by PCR in five cases with characteristic lesions. Other lesions attributable to toxoplasmosis were pneumonia (3/5 cases) and myocarditis (2/5 cases). Protozoal cysts were identified histologically within brain, lung, heart, skeletal muscle, adipose tissue, or a combination of samples in all five sheep with PCR-confirmed T. gondii infections. Seroprevalence of T. gondii ranged from 40-81% of adult females sampled in the Washington population in October and November 2018-2021, confirming high rates of exposure before detection of Toxoplasma abortions in this study. Of 1,149 bighorn sheep postmortem samples submitted to Washington Animal Disease Diagnostic Laboratory between January 2000 and May 2021, 21 of which were from fetuses or neonates, a single case of chronic toxoplasmosis was diagnosed in one adult ewe. Recent identification of Toxoplasma abortions in bighorn sheep suggests that toxoplasmosis is an underappreciated cause of reproductive loss. Abortions and neonatal mortalities should be investigated through postmortem and histologic examination, particularly in herds that are chronically small, demographically stagnant, or exhibit reproductive rates lower than expected.


Asunto(s)
Enfermedades de las Ovejas , Borrego Cimarrón , Toxoplasma , Toxoplasmosis Animal , Animales , Femenino , Embarazo , Estudios Seroepidemiológicos , Ovinos , Enfermedades de las Ovejas/diagnóstico , Enfermedades de las Ovejas/mortalidad , Enfermedades de las Ovejas/parasitología , Toxoplasma/aislamiento & purificación , Toxoplasmosis Animal/diagnóstico , Toxoplasmosis Animal/epidemiología , Aborto Veterinario/epidemiología , Aborto Veterinario/microbiología , Conservación de los Recursos Naturales , Animales Recién Nacidos/parasitología
5.
mBio ; 13(4): e0070322, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35862781

RESUMEN

The insect immune deficiency (IMD) pathway is a defense mechanism that senses and responds to Gram-negative bacteria. Ticks lack genes encoding upstream components that initiate the IMD pathway. Despite this deficiency, core signaling molecules are present and functionally restrict tick-borne pathogens. The molecular events preceding activation remain undefined. Here, we show that the unfolded-protein response (UPR) initiates the IMD network. The endoplasmic reticulum (ER) stress receptor IRE1α is phosphorylated in response to tick-borne bacteria but does not splice the mRNA encoding XBP1. Instead, through protein modeling and reciprocal pulldowns, we show that Ixodes IRE1α complexes with TRAF2. Disrupting IRE1α-TRAF2 signaling blocks IMD pathway activation and diminishes the production of reactive oxygen species. Through in vitro, in vivo, and ex vivo techniques, we demonstrate that the UPR-IMD pathway circuitry limits the Lyme disease-causing spirochete Borrelia burgdorferi and the rickettsial agents Anaplasma phagocytophilum and A. marginale (anaplasmosis). Altogether, our study uncovers a novel linkage between the UPR and the IMD pathway in arthropods. IMPORTANCE The ability of an arthropod to harbor and transmit pathogens is termed "vector competency." Many factors influence vector competency, including how arthropod immune processes respond to the microbe. Divergences in innate immunity between arthropods are increasingly being reported. For instance, although ticks lack genes encoding key upstream molecules of the immune deficiency (IMD) pathway, it is still functional and restricts causative agents of Lyme disease (Borrelia burgdorferi) and anaplasmosis (Anaplasma phagocytophilum). How the IMD pathway is activated in ticks without classically defined pathway initiators is not known. Here, we found that a cellular stress response network, the unfolded-protein response (UPR), functions upstream to induce the IMD pathway and restrict transmissible pathogens. Collectively, this explains how the IMD pathway can be activated in the absence of canonical pathway initiators. Given that the UPR is highly conserved, UPR-initiated immunity may be a fundamental principle impacting vector competency across arthropods.


Asunto(s)
Anaplasma phagocytophilum , Anaplasmosis , Artrópodos , Borrelia burgdorferi , Ixodes , Enfermedad de Lyme , Anaplasma phagocytophilum/fisiología , Animales , Endorribonucleasas , Ixodes/genética , Ixodes/microbiología , Proteínas Serina-Treonina Quinasas , Factor 2 Asociado a Receptor de TNF
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...