Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 7923, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36564381

RESUMEN

Human melanocytic nevi (moles) result from a brief period of clonal expansion of melanocytes. As a cellular defensive mechanism against oncogene-induced hyperplasia, nevus-resident melanocytes enter a senescent state of stable cell cycle arrest. Senescent melanocytes can persist for months in mice and years in humans with a risk to escape the senescent state and progress to melanoma. The mechanisms providing prolonged survival of senescent melanocytes remain poorly understood. Here, we show that senescent melanocytes in culture and in nevi express high level of the anti-apoptotic BCL-2 family member BCL-W but remain insensitive to the pan-BCL-2 inhibitor ABT-263. We demonstrate that resistance to ABT-263 is driven by mTOR-mediated enhanced translation of another anti-apoptotic member, MCL-1. Strikingly, the combination of ABT-263 and MCL-1 inhibitors results in synthetic lethality to senescent melanocytes, and its topical application sufficient to eliminate nevi in male mice. These data highlight the important role of redundant anti-apoptotic mechanisms for the survival advantage of senescent melanocytes, and the proof-of-concept for a non-invasive combination therapy for nevi removal.


Asunto(s)
Nevo Pigmentado , Nevo , Neoplasias Cutáneas , Masculino , Humanos , Animales , Ratones , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Melanocitos/metabolismo , Nevo/metabolismo , Neoplasias Cutáneas/metabolismo
2.
Semin Cancer Biol ; 81: 5-13, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33775830

RESUMEN

Therapy-induced cellular senescence is a state of stable growth arrest induced by common cancer treatments such as chemotherapy and radiation. In an oncogenic context, therapy-induced senescence can have different consequences. By blocking cellular proliferation and by facilitating immune cell infiltration, it functions as tumor suppressive mechanism. By fueling the proliferation of bystander cells and facilitating metastasis, it acts as a tumor promoting factor. This dual role is mainly attributed to the differential expression and secretion of a set of pro-inflammatory cytokines and tissue remodeling factors, collectively known as the Senescence-Associated Secretory Phenotype (SASP). Here, we describe cell-autonomous and non-cell-autonomous mechanisms that senescent cells activate in response to chemotherapy and radiation leading to tumor suppression and tumor promotion. We present the current state of knowledge on the stimuli that affect the activation of these opposing mechanisms and the effect of senescent cells on their micro-environment eg. by regulating the functions of immune cells in tumor clearance as well as strategies to eliminate senescent tumor cells before exerting their deleterious side-effects.


Asunto(s)
Neoplasias , Carcinogénesis , Proliferación Celular , Senescencia Celular/genética , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Oncogenes , Microambiente Tumoral/genética
3.
Antioxidants (Basel) ; 10(1)2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477450

RESUMEN

The antioxidant, cytoprotective, and wound-healing potential of the essential oil from the resin of Pistacia lentiscus var. chia (mastic oil) was evaluated, along with that of its major components, myrcene and α-pinene. Antioxidant potential was monitored as: (i) direct antioxidant activity as assessed by 2,2-di-phenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and ABTS assays; (ii) DNA damage protection activity; and (iii) cytoprotective activity as assessed via induction of transcription of genes related to the antioxidant response in human keratinocyte cells (HaCaT). The cytoprotective potential of the test substances was further evaluated against ultraviolet radiation B (UVB)- or H2O2-induced oxidative damage, whereas their regenerative capability was accessed by monitoring the wound closure rate in HaCaT. Μastic oil and major components did not show significant direct antioxidant activity, however they increased the mRNA levels of antioxidant response genes, suggesting indirect antioxidant activity. Treatment of HaCaT with the test substances before and after UVB irradiation resulted in increased cell viability in the cases of pre-treatment with mastic oil or post-treatment with myrcene. Increased cytoprotection was also observed in the case of cell treatment with mastic oil or its major components prior to H2O2 exposure. Finally, mastic oil and myrcene demonstrated a favorable dose-dependent effect for cell migration and wound closure. Collectively, mastic essential oil may exert its promising cytoprotective properties through indirect antioxidant mechanisms.

4.
J Invest Dermatol ; 141(4S): 1119-1126, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33349436

RESUMEN

Chronic exposure to UVR is known to disrupt tissue homeostasis, accelerate the onset of age-related phenotypes, and increase the risk for skin cancer-a phenomenon defined as photoaging. In this paper, we review the current knowledge on how UV exposure causes cells to prematurely enter cellular senescence. We describe the mechanisms contributing to the accumulation of senescent cells in the skin and how the persistence of cellular senescence can promote impaired regenerative capacity, chronic inflammation, and tumorigenesis associated with photoaging. We conclude by highlighting the potential of senolytic drugs in delaying the onset and progression of age-associated phenotypes in the skin.


Asunto(s)
Transformación Celular Neoplásica/efectos de la radiación , Senescencia Celular/efectos de la radiación , Envejecimiento de la Piel/patología , Neoplasias Cutáneas/patología , Rayos Ultravioleta/efectos adversos , Transformación Celular Neoplásica/patología , Humanos , Piel/citología , Piel/patología , Piel/efectos de la radiación , Envejecimiento de la Piel/efectos de la radiación , Neoplasias Cutáneas/etiología
5.
Antioxidants (Basel) ; 8(9)2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31491997

RESUMEN

Cornus mas L. (Cornelian cherry) is a flowering plant indigenous to Europe and parts of Asia, mostly studied for the antimicrobial activity of its juice. In this report, we investigated the composition and the in vitro antioxidant capacity of Cornus mas L. fruit juice from Greece, as well as its antiproliferative properties in vitro and in vivo. The fruits showed a high content of citric, malic, and succinic acid, in contrast to their juice, which had a low concentration of organic acids. The juice demonstrated significant antioxidant activity against the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and modest antiproliferative potential against four human cancer cells lines and one murine: mammary adenocarcinoma MCF-7, hepatocellular carcinoma HepG2 and colon adenocarcinomas Caco2, HT-29, as well as murine colon carcinoma CT26. Cell viability was reduced by 40-50% following incubation of the cells with the highest concentration of the juice. Although Cornelian cherry juice exhibited in vitro growth inhibitory effects against colon carcinoma cells, no tumor growth inhibition was observed in an in vivo experimental colon carcinoma model in mice following prophylactic oral administration of a daily dose of 100 L juice for a period of 10 days. Thus, our findings raise interesting questions for further research on Cornus mas L. fruit juice, and in parallel, the strong antioxidant potential implies that the plant could be further explored and exploited for its protective effect against oxidative damage.

6.
Antioxidants (Basel) ; 8(8)2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31394842

RESUMEN

Aromatic plants have a long and significant history in the traditional medicine of many countries. Nowadays, there is an increasing interest in investigating the biological properties of aromatic plant extracts mainly due to their diversity, high availability, and low toxicity. Greece is abundant in aromatic plants, which can be attributed to the country's geographical position, the morphology of its landscape, and its numerous mountainous and insular areas. In the past 15 years, a number of aromatic plant extracts of Greek origin have been studied for their bioactivities, including their antiproliferative potential against different types of cancer. Although the pharmacological activities of specific species of Greek origin have been reviewed before, no gathered information on explicitly Greek species exist. In this review, we summarize existing data on the antiproliferative activity of extracts isolated from Greek aromatic plants and discuss their molecular mode(s) of action, where available, in order to identify promising extracts for future research and link chemical constituents responsible for their activity. We conclude that essentials oils are the most frequently studied plant extracts exhibiting high diversity in their composition and anticancer potential, but also other extracts appear to be worthy of further investigation for cancer chemoprevention.

7.
Molecules ; 24(14)2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31323754

RESUMEN

Origanum species are plants rich in volatile oils that are mainly used for culinary purposes. In recent years, there has been a growing interest in the biological activities of their essential oils. Origanum onites L. is a plant mainly found in Greece, Turkey, and Sicily, whose oil is rich in carvacrol, a highly bioactive phytochemical. The aim of this study was to analyze the chemical composition of Origanum onites essential oil (OOEO), and investigate its potential anticancer effects in vitro and in vivo. GC/MS analysis identified carvacrol as OOEO's main constituent. In vitro antiproliferative activity was assayed with the sulforhodamine B (SRB) assay against human cancer cell lines from four tumor types. HT-29, a colorectal cancer cell line, was the most sensitive to the antiproliferative activity of OOEO. Wound-healing assay and Annexin V-PI staining were employed to investigate the antimigratory and the pro-apoptotic potential of OOEO, respectively, against human (HT-29) and murine (CT26) colon cancer cells. Notably, OOEO attenuated migration and induced apoptosis-related morphological changes in both cell lines. Prophylactic oral administration of the oil in a BALB/c experimental mouse model inhibited the growth of syngeneic CT26 colon tumors. As far as we know, this is the first report on the antitumor potential of orally administered OOEO.


Asunto(s)
Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Aceites Volátiles/química , Aceites Volátiles/farmacología , Origanum/química , Animales , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Fraccionamiento Químico , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Cromatografía de Gases y Espectrometría de Masas , Humanos , Ratones , Aceites Volátiles/aislamiento & purificación , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Molecules ; 23(1)2018 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-29329229

RESUMEN

The aim of the study was to characterize the chemical composition and biological properties of the essential oil from the plant Lippia citriodora grown in Greece. The essential oil volatiles were analyzed by gas chromatography-mass spectrometry GC-MS indicating citral as the major component. Τhe antimicrobial properties were assayed using the disk diffusion method and the minimum inhibitory and non-inhibitory concentration values were determined. Listeria monocytogenes, Staphylococcus epidermidis, Staphylococcus aureus, Saccharomyces cerevisiae, and Aspergillus niger were sensitive to Lippia citriodora oil, but not Escherichia coli, Salmonella Enteritidis, Salmonella typhimurium, and Pseudomonas fragi. Adversely, all microbes tested were sensitive to citral. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays were used to assess direct antioxidant activity, which proved to be weak for both agents, while comet assay was utilized to study the cytoprotective effects against H2O2-induced oxidative damage in Jurkat cells. Interestingly, the oil showed a more profound cytoprotective effect compared to citral. The antiproliferative activity was evaluated in a panel of cancer cell lines using the sulforhodamine B (SRB) and 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-S-(phenylamino) carbonyl-2-tetrazolium hydroxide (XTT) assays and both agents demonstrated potent antiproliferative activity with citral being more cytotoxic than the oil. Taken together, the essential oil of Lippia citriodora and its major component, citral, exert diverse biological properties worthy of further investigation.


Asunto(s)
Lippia/química , Aceites Volátiles/química , Fitoquímicos/química , Aceites de Plantas/química , Antibacterianos/química , Antibacterianos/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Aceites Volátiles/farmacología , Fitoquímicos/farmacología , Aceites de Plantas/análisis , Aceites de Plantas/farmacología
9.
Sci Rep ; 7(1): 3782, 2017 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-28630399

RESUMEN

Plant-derived bioactive compounds attract considerable interest as potential chemopreventive anticancer agents. We analyzed the volatile dietary phytochemicals (terpenes) present in mastic oil extracted from the resin of Pistacia lentiscus var. chia and comparatively investigated their effects on colon carcinoma proliferation, a) in vitro against colon cancer cell lines and b) in vivo on tumor growth in mice following oral administration. Mastic oil inhibited - more effectively than its major constituents- proliferation of colon cancer cells in vitro, attenuated migration and downregulated transcriptional expression of survivin (BIRC5a). When administered orally, mastic oil inhibited the growth of colon carcinoma tumors in mice. A reduced expression of Ki-67 and survivin in tumor tissues accompanied the observed effects. Notably, only mastic oil -which is comprised of 67.7% α-pinene and 18.8% myrcene- induced a statistically significant anti-tumor effect in mice but not α-pinene, myrcene or a combination thereof. Thus, mastic oil, as a combination of terpenes, exerts growth inhibitory effects against colon carcinoma, suggesting a nutraceutical potential in the fight against colon cancer. To our knowledge, this is the first report showing that orally administered mastic oil induces tumor-suppressing effects against experimental colon cancer.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias del Colon/tratamiento farmacológico , Resina Mástique/química , Neoplasias Experimentales/tratamiento farmacológico , Pistacia/química , Aceites de Plantas/farmacología , Animales , Antineoplásicos Fitogénicos/química , Células CACO-2 , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Aceites de Plantas/química , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Anticancer Res ; 36(11): 5757-5763, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27793897

RESUMEN

AIM: The biopotential of the essential oils of the Greek aromatic plants Satureja thymbra and Satureja parnassica were investigated, together with their major components carvacrol, thymol, γ-terpinene and p-cymene. MATERIALS AND METHODS: Antioxidant and cancer cell cytotoxic properties were determined using 2,2-diphenyl-1-picrylhydrazyl and sulforhodamine B assays, respectively. The antiproliferative potential was studied against the MCF-7, A549, HepG2 and Hep3B cell lines. RESULTS: S. thymbra oil possessed stronger antioxidant and antiproliferative capacity when tested on MCF-7 cells compared to S. parnassica oil. Thymol exhibited two-fold greater antioxidant potency than carvacrol, whereas γ-terpinene and p-cymene had no significant effect. Carvacrol was the most potent antiproliferative agent against A549 cells, while Hep3B cells were most sensitive to thymol. p-Cymene and γ-terpinene demonstrated negligible bioactivity. CONCLUSION: S. thymbra and S. parnassica essential oils exhibit significant but diverse antioxidant and antiproliferative activities, mainly attributed to their main components, carvacrol and thymol.


Asunto(s)
Antioxidantes/farmacología , Proliferación Celular/efectos de los fármacos , Aceites Volátiles/farmacología , Satureja/química , Línea Celular Tumoral , Humanos
11.
Molecules ; 21(8)2016 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-27537869

RESUMEN

Natural products, known for their medicinal properties since antiquity, are continuously being studied for their biological properties. In the present study, we analyzed the composition of the volatile preparations of essential oils of the Greek plants Ocimum basilicum (sweet basil), Mentha spicata (spearmint), Pimpinella anisum (anise) and Fortunella margarita (kumquat). GC/MS analyses revealed that the major components in the essential oil fractions, were carvone (85.4%) in spearmint, methyl chavicol (74.9%) in sweet basil, trans-anethole (88.1%) in anise, and limonene (93.8%) in kumquat. We further explored their biological potential by studying their antimicrobial, antioxidant and antiproliferative activities. Only the essential oils from spearmint and sweet basil demonstrated cytotoxicity against common foodborne bacteria, while all preparations were active against the fungi Saccharomyces cerevisiae and Aspergillus niger. Antioxidant evaluation by DPPH and ABTS radical scavenging activity assays revealed a variable degree of antioxidant potency. Finally, their antiproliferative potential was tested against a panel of human cancer cell lines and evaluated by using the sulforhodamine B (SRB) assay. All essential oil preparations exhibited a variable degree of antiproliferative activity, depending on the cancer model used, with the most potent one being sweet basil against an in vitro model of human colon carcinoma.


Asunto(s)
Mentha spicata/química , Ocimum basilicum/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Pimpinella/química , Rutaceae/química , Derivados de Alilbenceno , Anisoles/aislamiento & purificación , Anisoles/farmacología , Aspergillus niger/efectos de los fármacos , Bacterias/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Monoterpenos Ciclohexánicos , Ciclohexenos/aislamiento & purificación , Ciclohexenos/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Microbiología de Alimentos , Humanos , Limoneno , Pruebas de Sensibilidad Microbiana , Monoterpenos/aislamiento & purificación , Monoterpenos/farmacología , Oxidación-Reducción/efectos de los fármacos , Aceites de Plantas/química , Aceites de Plantas/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Terpenos/aislamiento & purificación , Terpenos/farmacología
12.
Microb Ecol Health Dis ; 26: 26543, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25952773

RESUMEN

BACKGROUND: Nowadays, there has been an increased interest in essential oils from various plant origins as potential antimicrobial, antioxidant, and antiproliferative agents. This trend can be mainly attributed to the rising number and severity of food poisoning outbreaks worldwide along with the recent negative consumer perception against artificial food additives and the demand for novel functional foods with possible health benefits. Origanum dictamnus (dittany) is an aromatic, tender perennial plant that only grows wild on the mountainsides and gorges of the island of Crete in Greece. OBJECTIVE: The aim of the present study was to investigate the antimicrobial, antioxidant, and antiproliferative properties of O. dictamnus essential oil and its main components and assess its commercial potential in the food industry. DESIGN: O. dictamnus essential oil was initially analyzed by gas chromatography-mass spectrometry (GC-MS) to determine semi-quantitative chemical composition of the essential oils. Subsequently, the antimicrobial properties were assayed and the minimum inhibitory and non-inhibitory concentration values were determined. The antioxidant activity and cytotoxic action against the hepatoma adenocarcinoma cell line HepG2 of the essential oil and its main components were further evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and by the sulforhodamine B (SRB) assay, respectively. RESULTS: The main constituents of O. dictamnus essential oil identified by GC-MS analysis were carvacrol (52.2%), γ-terpinene (8.4%), p-cymene (6.1%), linalool (1.4%), and caryophyllene (1.3%). O. dictamnus essential oil and its main components were effective against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Listeria monocytogenes, Salmonella Enteritidis, Salmonella typhimurium, Saccharomyces cerevisiae, and Aspergillus niger. In addition, the estimated IC50 value for the DPPH radical scavenging activity for O. dictamnus essential oil was 0.045±0.0042% (v/v) and was mainly attributed to carvacrol. The EC50 value for the essential oil in the 72h SRB assay in HepG2 cells was estimated to be 0.0069±0.00014% (v/v). Among the individual constituents tested, carvacrol was the most bioactive compound and accounted for the observed antiproliferative activity of the essential oil. CONCLUSIONS: The results revealed that O. dictamnus essential oil is a noteworthy growth inhibitor against the microbes studied. It also possesses significant antioxidant activity and demonstrated excellent cytotoxicity against HepG2 cells. Taken together, O. dictamnus essential oil may represent an effective and inexpensive source of potent natural antimicrobial agents with health-promoting properties, which may be incorporated in food systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...