Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Air Waste Manag Assoc ; 62(6): 680-5, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22788106

RESUMEN

2,2,4-trimethyl, 1,3-pentanediol monoisobutyrate (TPM) is a widely used solvent found in water-based coatings. Ambient measurements of TPM are reported here for the first time. Although this compound has been previously measured in indoor air, this study illustrates successful detection and quantification of TPM in ambient air at three locations in Southern California: Pico Rivera, Azusa, and Riverside. TPM was detected in every sample collected, with concentrations ranging from 0.7 to 49.5 parts per trillion (ppt). Collections took place during summer 2009, fall 2009, winter 2009/2010, and spring 2010, for 5-7 days during each season. The highest mean concentrations were observed during the summer months for each city, when coating activities are typically at their highest.


Asunto(s)
Contaminantes Atmosféricos/química , Glicoles/química , Contaminación del Aire , California , Solventes/química
2.
J Air Waste Manag Assoc ; 55(10): 1418-30, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16295266

RESUMEN

Real-time concentrations of black carbon, particle-bound polycyclic aromatic hydrocarbons, nitrogen dioxide, and fine particulate counts, as well as integrated and real-time fine particulate matter (PM2.5) mass concentrations were measured inside school buses during long commutes on Los Angeles Unified School District bus routes, at bus stops along the routes, at the bus loading/unloading zone in front of the selected school, and at nearby urban "background" sites. Across all of the pollutants, mean concentrations during bus commutes were higher than in any other microenvironment. Mean exposures (mean concentration times time spent in a particular microenvironment) in bus commutes were between 50 and 200 times greater than those for the loading/unloading microenvironment, and 20-40 times higher than those for the bus stops, depending on the pollutant. Although the analyzed school bus commutes represented only 10% of a child's day, on average they contributed one-third of a child's 24-hr overall black carbon exposure during a school day. For species closely related to vehicle exhaust, the within- cabin exposures were generally dominated by the effect of surrounding traffic when windows were open and by the bus's own exhaust when windows were closed. Low-emitting buses generally exhibited high concentrations only when traveling behind a diesel vehicle, whereas high-emitting buses exhibited high concentrations both when following other diesel vehicles and when idling without another diesel vehicle in front of the bus. To reduce school bus commute exposures, we recommend minimizing commute times, avoiding caravanning with other school buses, using the cleanest buses for the longest bus routes, maintaining conventional diesel buses to eliminate visible emissions, and transitioning to cleaner fuels and advanced particulate control technologies as soon as possible.


Asunto(s)
Ambiente , Exposición a Riesgos Ambientales , Transportes , Contaminantes Ocupacionales del Aire/análisis , California , Carbono/análisis , Niño , Humanos , Dióxido de Nitrógeno/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Instituciones Académicas
3.
J Expo Anal Environ Epidemiol ; 15(5): 377-87, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15592444

RESUMEN

Real-time and integrated measurements of gaseous and particulate pollutants were conducted inside five conventional diesel school buses, a diesel bus with a particulate trap, and a bus powered by compressed natural gas (CNG) to determine the range of children's exposures during school bus commutes and conditions leading to high exposures. Measurements were made during 24 morning and afternoon commutes on two Los Angeles Unified School District bus routes from South to West Los Angeles, with seven additional runs on a rural/suburban route, and three runs to test the effect of window position. For these commutes, the mean concentrations of diesel vehicle-related pollutants ranged from 0.9 to 19 microg/m(3) for black carbon, 23 to 400 ng/m(3) for particle-bound polycyclic aromatic hydrocarbon (PB-PAH), and 64 to 220 microg/m(3) for NO(2). Concentrations of benzene and formaldehyde ranged from 0.1 to 11 microg/m(3) and 0.3 to 5 microg/m(3), respectively. The highest real-time concentrations of black carbon, PB-PAH and NO(2) inside the buses were 52 microg/m(3), 2000 ng/m(3), and 370 microg/m(3), respectively. These pollutants were significantly higher inside conventional diesel buses compared to the CNG bus, although formaldehyde concentrations were higher inside the CNG bus. Mean black carbon, PB-PAH, benzene and formaldehyde concentrations were higher when the windows were closed, compared with partially open, in part, due to intrusion of the bus's own exhaust into the bus cabin, as demonstrated through the use of a tracer gas added to each bus's exhaust. These same pollutants tended to be higher on urban routes compared to the rural/suburban route, and substantially higher inside the bus cabins compared to ambient measurements. Mean concentrations of pollutants with substantial secondary formation, such as PM(2.5), showed smaller differences between open and closed window conditions and between bus routes. Type of bus, traffic congestion levels, and encounters with other diesel vehicles contributed to high exposure variability between runs.


Asunto(s)
Contaminación del Aire Interior/análisis , Exposición a Riesgos Ambientales , Emisiones de Vehículos/análisis , Niño , Protección a la Infancia , Monitoreo del Ambiente , Combustibles Fósiles , Humanos , Los Angeles , Vehículos a Motor , Población Rural , Estudiantes , Población Urbana
4.
J Air Waste Manag Assoc ; 54(4): 473-82, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15115376

RESUMEN

This paper evaluates the application of dispersion models to estimate near-field pollutant concentrations in two case studies. The Industrial Source Complex Short-Term Model (ISCST3) was evaluated with hexavalent chromium measurements collected within 100 m of two facilities in Barrio Logan, San Diego, CA. ISCST3 provided reasonable estimates for higher pollutant concentrations but underestimated lower concentrations. To understand the observed distribution of concentrations in Barrio Logan, a recently conducted tracer experiment was analyzed. The tracer, sulfur hexafluoride, was released at ambient temperature from an urban facility at the University of California at Riverside, and concentrations were measured within 20 m of the source. Modeling results indicated that Industrial Source Complex-Plume Rise Model Enhancement and American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model-Plume Rise Model Enhancement overestimated high concentrations and underestimated low concentrations. A diagnostic study with a simple Gaussian dispersion model that incorporated site-specific meteorology was used to evaluate model results. This study found that incorporating lateral meandering for nonbuoyant urban plumes in Gaussian dispersion models could improve concentration estimates even when downwash is not considered. Incorporating a meandering component in ISCST3 resulted in improvements in estimating hexavalent chromium concentrations in Barrio Logan. Credible near-source concentration estimates depend on accurate characterization of emissions, onsite micrometeorology, and a method to account for lateral meandering in the near field.


Asunto(s)
Contaminantes Atmosféricos/análisis , Ambiente , Modelos Teóricos , Formulación de Políticas , Movimientos del Aire , Predicción
5.
J Air Waste Manag Assoc ; 53(8): 937-45, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12943313

RESUMEN

Passive samplers have been shown to be an inexpensive alternative to direct sampling. Diffusion denuders have been developed to measure the concentration of species such as ammonia (NH3), which is in equilibrium with particulate ammonium nitrate. Conventional denuder sampling has required active sampling that inherently requires air pumps and, therefore, electrical power. To estimate emissions of NH3 from a fugitive source would require an array of active samplers and meteorological measurements to estimate the flux. A recently developed fabric denuder was configured in an open tube to passively sample NH3 flux. Passive and active samplers were collocated at a dairy farm at the California State University, Fresno, Agricultural Research Facility. During this comparison study, NH3 flux measurements were made at the dairy farm lagoon before and after the lagoon underwent acidification. Comparisons were made of the flux measurements obtained directly from the passive flux denuder and those calculated from an active filter pack sampler and wind velocity. The results show significant correlation between the two methods, although a correction factor needed to be applied to directly compare the two techniques. This passive sampling approach significantly reduces the cost and complexity of sampling and has the potential to economically develop a larger inventory base for ambient NH3 emissions.


Asunto(s)
Contaminantes Atmosféricos/análisis , Amoníaco/análisis , Industria Lechera , Monitoreo del Ambiente/instrumentación , Animales , Bovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA