Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 68(3): e0106423, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38349161

RESUMEN

Screening a library of 1,200 preselected kinase inhibitors for anti-human rhinovirus 2 (HRV-2) activity in HeLa cells identified a class of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI) as effective virus blockers. These were based on the 4-anilinoquinazoline-7-oxypiperidine scaffold, with the most potent representative AZ5385 inhibiting the virus with EC50 of 0.35 µM. Several structurally related analogs confirmed activity in the low µM range, while interestingly, other TKIs targeting EGFR lacked anti-HRV-2 activity. To further probe this lack of association between antiviral activity and EGFR inhibition, we stained infected cells with antibodies specific for activated EGFR (Y1068) and did not observe a dependency on EGFR-TK activity. Instead, consecutive passages of HRV-2 in HeLa cells in the presence of a compound and subsequent nucleotide sequence analysis of resistant viral variants identified the S181T and T210A alterations in the major capsid VP1 protein, with both residues located in the vicinity of a known hydrophobic pocket on the viral capsid. Further characterization of the antiviral effects of AZ5385 showed a modest virus-inactivating (virucidal) activity, while anti-HRV-2 activity was still evident when the inhibitor was added as late as 10 h post infection. The RNA copy/infectivity ratio of HRV-2 propagated in AZ5385 presence was substantially higher than that of control HRV indicating that the compound preferentially targeted HRV progeny virions during their maturation in infected cells. Besides HRV, the compound showed anti-respiratory syncytial virus activity, which warrants its further studies as a candidate compound against viral respiratory infections.


Asunto(s)
Rhinovirus , Humanos , Rhinovirus/química , Rhinovirus/genética , Células HeLa , Proteínas de la Cápside , Antivirales/química , Receptores ErbB
2.
ACS Med Chem Lett ; 14(12): 1760-1766, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38116421

RESUMEN

A high-throughput fragment-based screen has been employed to discover a series of quinazolinone inositol hexakisphosphate kinase (IP6K) inhibitors. IP6Ks have been studied for their role in glucose homeostasis, metabolic disease, fatty liver disease, chronic kidney disease, blood coagulation, neurological development, and psychiatric disease. IP6Ks phosphorylate inositol hexakisphosphate (IP6) to form pyrophosphate 5-diphospho-1,2,3,4,6-pentakisphosphate (IP7). Molecular docking studies and investigation of structure-activity relationships around the quinazolinone core resulted in compounds with submicromolar potency and interesting selectivity for IP6K1 versus the closely related IP6K2 and IP6K3 isoforms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA