Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Nat Commun ; 15(1): 16, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331941

RESUMEN

Brain dynamic functional connectivity characterises transient connections between brain regions. Features of brain dynamics have been linked to emotion and cognition in adult individuals, and atypical patterns have been associated with neurodevelopmental conditions such as autism. Although reliable functional brain networks have been consistently identified in neonates, little is known about the early development of dynamic functional connectivity. In this study we characterise dynamic functional connectivity with functional magnetic resonance imaging (fMRI) in the first few weeks of postnatal life in term-born (n = 324) and preterm-born (n = 66) individuals. We show that a dynamic landscape of brain connectivity is already established by the time of birth in the human brain, characterised by six transient states of neonatal functional connectivity with changing dynamics through the neonatal period. The pattern of dynamic connectivity is atypical in preterm-born infants, and associated with atypical social, sensory, and repetitive behaviours measured by the Quantitative Checklist for Autism in Toddlers (Q-CHAT) scores at 18 months of age.


Asunto(s)
Trastorno Autístico , Recien Nacido Prematuro , Preescolar , Lactante , Adulto , Humanos , Recién Nacido , Encéfalo/patología , Mapeo Encefálico , Imagen por Resonancia Magnética
2.
Commun Biol ; 6(1): 661, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349403

RESUMEN

A key feature of the fetal period is the rapid emergence of organised patterns of spontaneous brain activity. However, characterising this process in utero using functional MRI is inherently challenging and requires analytical methods which can capture the constituent developmental transformations. Here, we introduce a novel analytical framework, termed "maturational networks" (matnets), that achieves this by modelling functional networks as an emerging property of the developing brain. Compared to standard network analysis methods that assume consistent patterns of connectivity across development, our method incorporates age-related changes in connectivity directly into network estimation. We test its performance in a large neonatal sample, finding that the matnets approach characterises adult-like features of functional network architecture with a greater specificity than a standard group-ICA approach; for example, our approach is able to identify a nearly complete default mode network. In the in-utero brain, matnets enables us to reveal the richness of emerging functional connections and the hierarchy of their maturational relationships with remarkable anatomical specificity. We show that the associative areas play a central role within prenatal functional architecture, therefore indicating that functional connections of high-level associative areas start emerging prior to exposure to the extra-utero environment.


Asunto(s)
Mapeo Encefálico , Encéfalo , Adulto , Embarazo , Femenino , Recién Nacido , Humanos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Feto , Imagen por Resonancia Magnética
3.
Dev Cogn Neurosci ; 61: 101250, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37150083

RESUMEN

Preterm birth results in premature exposure of the brain to the extrauterine environment during a critical period of neurodevelopment. Consequently, infants born preterm are at a heightened risk of adverse behavioural outcomes in later life. We characterise longitudinal development of neonatal regional brain volume and functional connectivity in the first weeks following preterm birth, sociodemographic factors, and their respective relationships to psychomotor outcomes and psychopathology in toddlerhood. We study 121 infants born preterm who underwent magnetic resonance imaging shortly after birth, at term-equivalent age, or both. Longitudinal regional brain volume and functional connectivity were modelled as a function of psychopathology and psychomotor outcomes at 18 months. Better psychomotor functioning in toddlerhood was associated with greater relative right cerebellar volume and a more rapid decrease over time of sensorimotor degree centrality in the neonatal period. In contrast, increased 18-month psychopathology was associated with a more rapid decrease in relative regional subcortical volume. Furthermore, while socio-economic deprivation was related to both psychopathology and psychomotor outcomes, cognitively stimulating parenting predicted psychopathology only. Our study highlights the importance of longitudinal imaging to better predict toddler outcomes following preterm birth, as well as disparate environmental influences on separable facets of behavioural development in this population.


Asunto(s)
Recien Nacido Prematuro , Nacimiento Prematuro , Femenino , Recién Nacido , Lactante , Humanos , Nacimiento Prematuro/patología , Encéfalo , Imagen por Resonancia Magnética/métodos , Demografía
4.
Nat Hum Behav ; 7(6): 942-955, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36928781

RESUMEN

Features of brain asymmetry have been implicated in a broad range of cognitive processes; however, their origins are still poorly understood. Here we investigated cortical asymmetries in 442 healthy term-born neonates using structural and functional magnetic resonance images from the Developing Human Connectome Project. Our results demonstrate that the neonatal cortex is markedly asymmetric in both structure and function. Cortical asymmetries observed in the term cohort were contextualized in two ways: by comparing them against cortical asymmetries observed in 103 preterm neonates scanned at term-equivalent age, and by comparing structural asymmetries against those observed in 1,110 healthy young adults from the Human Connectome Project. While associations with preterm birth and biological sex were minimal, significant differences exist between birth and adulthood.


Asunto(s)
Corteza Cerebral , Lateralidad Funcional , Femenino , Humanos , Recién Nacido , Masculino , Adulto Joven , Vías Auditivas , Peso al Nacer , Corteza Cerebral/anatomía & histología , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Estudios de Cohortes , Conectoma , Lateralidad Funcional/fisiología , Edad Gestacional , Salud , Recien Nacido Prematuro , Imagen por Resonancia Magnética , Red Nerviosa/anatomía & histología , Red Nerviosa/citología , Red Nerviosa/fisiología , Vías Visuales
5.
Pediatr Res ; 94(2): 699-706, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36788288

RESUMEN

BACKGROUND: Early risk stratification for developing retinopathy of prematurity (ROP) is essential for tailoring screening strategies and preventing abnormal retinal development. This study aims to examine the ability of physiological data during the first postnatal month to distinguish preterm infants with and without ROP requiring laser treatment. METHODS: In this cohort study, preterm infants with a gestational age <32 weeks and/or birth weight <1500 g, who were screened for ROP were included. Differences in the physiological data between the laser and non-laser group were identified, and tree-based classification models were trained and independently tested to predict ROP requiring laser treatment. RESULTS: In total, 208 preterm infants were included in the analysis of whom 30 infants (14%) required laser treatment. Significant differences were identified in the level of hypoxia and hyperoxia, oxygen requirement, and skewness of heart rate. The best model had a balanced accuracy of 0.81 (0.72-0.87), a sensitivity of 0.73 (0.64-0.81), and a specificity of 0.88 (0.80-0.93) and included the SpO2/FiO2 ratio and baseline demographics (including gestational age and birth weight). CONCLUSIONS: Routinely monitored physiological data from preterm infants in the first postnatal month are already predictive of later development of ROP requiring laser treatment, although validation is required in larger cohorts. IMPACT: Routinely monitored physiological data from the first postnatal month are predictive of later development of ROP requiring laser treatment, although model performance was not significantly better than baseline characteristics (gestational age, birth weight, sex, multiple birth, prenatal glucocorticosteroids, route of delivery, and Apgar scores) alone. A balanced accuracy of 0.81 (0.72-0.87), a sensitivity of 0.73 (0.64-0.81), and a specificity of 0.88 (0.80-0.93) was achieved with a model including the SpO2/FiO2 ratio and baseline characteristics. Physiological data have potential to play a significant role for future ROP prediction and provide opportunities for early interventions to protect infants from abnormal retinal development.


Asunto(s)
Recien Nacido Prematuro , Retinopatía de la Prematuridad , Lactante , Femenino , Embarazo , Recién Nacido , Humanos , Peso al Nacer , Retinopatía de la Prematuridad/diagnóstico , Retinopatía de la Prematuridad/cirugía , Estudios de Cohortes , Factores de Riesgo , Edad Gestacional , Estudios Retrospectivos , Recién Nacido de muy Bajo Peso
6.
Neuroimage ; 265: 119792, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36509214

RESUMEN

BACKGROUND: Accurate registration between microscopy and MRI data is necessary for validating imaging biomarkers against neuropathology, and to disentangle complex signal dependencies in microstructural MRI. Existing registration methods often rely on serial histological sampling or significant manual input, providing limited scope to work with a large number of stand-alone histology sections. Here we present a customisable pipeline to assist the registration of stand-alone histology sections to whole-brain MRI data. METHODS: Our pipeline registers stained histology sections to whole-brain post-mortem MRI in 4 stages, with the help of two photographic intermediaries: a block face image (to undistort histology sections) and coronal brain slab photographs (to insert them into MRI space). Each registration stage is implemented as a configurable stand-alone Python script using our novel platform, Tensor Image Registration Library (TIRL), which provides flexibility for wider adaptation. We report our experience of registering 87 PLP-stained histology sections from 14 subjects and perform various experiments to assess the accuracy and robustness of each stage of the pipeline. RESULTS: All 87 histology sections were successfully registered to MRI. Histology-to-block registration (Stage 1) achieved 0.2-0.4 mm accuracy, better than commonly used existing methods. Block-to-slice matching (Stage 2) showed great robustness in automatically identifying and inserting small tissue blocks into whole brain slices with 0.2 mm accuracy. Simulations demonstrated sub-voxel level accuracy (0.13 mm) of the slice-to-volume registration (Stage 3) algorithm, which was observed in over 200 actual brain slice registrations, compensating 3D slice deformations up to 6.5 mm. Stage 4 combined the previous stages and generated refined pixelwise aligned multi-modal histology-MRI stacks. CONCLUSIONS: Our open-source pipeline provides robust automation tools for registering stand-alone histology sections to MRI data with sub-voxel level precision, and the underlying framework makes it readily adaptable to a diverse range of microscopy-MRI studies.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Neuroimagen , Técnicas Histológicas/métodos , Autopsia , Imagenología Tridimensional/métodos
7.
IEEE Trans Med Imaging ; 42(4): 959-970, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36374873

RESUMEN

An important goal of medical imaging is to be able to precisely detect patterns of disease specific to individual scans; however, this is challenged in brain imaging by the degree of heterogeneity of shape and appearance. Traditional methods, based on image registration, historically fail to detect variable features of disease, as they utilise population-based analyses, suited primarily to studying group-average effects. In this paper we therefore take advantage of recent developments in generative deep learning to develop a method for simultaneous classification, or regression, and feature attribution (FA). Specifically, we explore the use of a VAE-GAN (variational autoencoder - general adversarial network) for translation called ICAM, to explicitly disentangle class relevant features, from background confounds, for improved interpretability and regression of neurological phenotypes. We validate our method on the tasks of Mini-Mental State Examination (MMSE) cognitive test score prediction for the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort, as well as brain age prediction, for both neurodevelopment and neurodegeneration, using the developing Human Connectome Project (dHCP) and UK Biobank datasets. We show that the generated FA maps can be used to explain outlier predictions and demonstrate that the inclusion of a regression module improves the disentanglement of the latent space. Our code is freely available on GitHub https://github.com/CherBass/ICAM.


Asunto(s)
Conectoma , Neuroimagen , Humanos , Neuroimagen/métodos , Encéfalo/diagnóstico por imagen , Cintigrafía
8.
Cereb Cortex ; 33(9): 5585-5596, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36408638

RESUMEN

Formation of the functional connectome in early life underpins future learning and behavior. However, our understanding of how the functional organization of brain regions into interconnected hubs (centrality) matures in the early postnatal period is limited, especially in response to factors associated with adverse neurodevelopmental outcomes such as preterm birth. We characterized voxel-wise functional centrality (weighted degree) in 366 neonates from the Developing Human Connectome Project. We tested the hypothesis that functional centrality matures with age at scan in term-born babies and is disrupted by preterm birth. Finally, we asked whether neonatal functional centrality predicts general neurodevelopmental outcomes at 18 months. We report an age-related increase in functional centrality predominantly within visual regions and a decrease within the motor and auditory regions in term-born infants. Preterm-born infants scanned at term equivalent age had higher functional centrality predominantly within visual regions and lower measures in motor regions. Functional centrality was not related to outcome at 18 months old. Thus, preterm birth appears to affect functional centrality in regions undergoing substantial development during the perinatal period. Our work raises the question of whether these alterations are adaptive or disruptive and whether they predict neurodevelopmental characteristics that are more subtle or emerge later in life.


Asunto(s)
Conectoma , Nacimiento Prematuro , Lactante , Embarazo , Femenino , Recién Nacido , Humanos , Imagen por Resonancia Magnética , Encéfalo , Recien Nacido Prematuro
9.
Brain Behav ; 12(9): e2721, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35919931

RESUMEN

OBJECTIVE: In publications on the electroencephalographic (EEG) features of psychoses and other disorders, various methods are utilized to diminish electromyogram (EMG) contamination. The extent of residual EMG contamination using these methods has not been recognized. Here, we seek to emphasize the extent of residual EMG contamination of EEG. METHODS: We compared scalp electrical recordings after applying different EMG-pruning methods with recordings of EMG-free data from 6 fully paralyzed healthy subjects. We calculated the ratio of the power of pruned, normal scalp electrical recordings in the six subjects, to the power of unpruned recordings in the same subjects when paralyzed. We produced "contamination graphs" for different pruning methods. RESULTS: EMG contamination exceeds EEG signals progressively more as frequencies exceed 25 Hz and with distance from the vertex. In contrast, Laplacian signals are spared in central scalp areas, even to 100 Hz. CONCLUSION: Given probable EMG contamination of EEG in psychiatric and other studies, few findings on beta- or gamma-frequency power can be relied upon. Based on the effectiveness of current methods of EEG de-contamination, investigators should be able to reanalyze recorded data, reevaluate conclusions from high-frequency EEG data, and be aware of limitations of the methods.


Asunto(s)
Trastornos Psicóticos , Cuero Cabelludo , Electroencefalografía/métodos , Electromiografía/métodos , Humanos , Trastornos Psicóticos/diagnóstico
10.
Dev Cogn Neurosci ; 55: 101117, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35662682

RESUMEN

In the mature brain, structural and functional 'fingerprints' of brain connectivity can be used to identify the uniqueness of an individual. However, whether the characteristics that make a given brain distinguishable from others already exist at birth remains unknown. Here, we used neuroimaging data from the developing Human Connectome Project (dHCP) of preterm born neonates who were scanned twice during the perinatal period to assess the developing brain fingerprint. We found that 62% of the participants could be identified based on the congruence of the later structural connectome to the initial connectivity matrix derived from the earlier timepoint. In contrast, similarity between functional connectomes of the same subject at different time points was low. Only 10% of the participants showed greater self-similarity in comparison to self-to-other-similarity for the functional connectome. These results suggest that structural connectivity is more stable in early life and can represent a potential connectome fingerprint of the individual: a relatively stable structural connectome appears to support a changing functional connectome at a time when neonates must rapidly acquire new skills to adapt to their new environment.


Asunto(s)
Conectoma , Encéfalo , Conectoma/métodos , Humanos , Recién Nacido , Imagen por Resonancia Magnética
11.
Front Neurosci ; 16: 886772, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677357

RESUMEN

The Developing Human Connectome Project has created a large open science resource which provides researchers with data for investigating typical and atypical brain development across the perinatal period. It has collected 1228 multimodal magnetic resonance imaging (MRI) brain datasets from 1173 fetal and/or neonatal participants, together with collateral demographic, clinical, family, neurocognitive and genomic data from 1173 participants, together with collateral demographic, clinical, family, neurocognitive and genomic data. All subjects were studied in utero and/or soon after birth on a single MRI scanner using specially developed scanning sequences which included novel motion-tolerant imaging methods. Imaging data are complemented by rich demographic, clinical, neurodevelopmental, and genomic information. The project is now releasing a large set of neonatal data; fetal data will be described and released separately. This release includes scans from 783 infants of whom: 583 were healthy infants born at term; as well as preterm infants; and infants at high risk of atypical neurocognitive development. Many infants were imaged more than once to provide longitudinal data, and the total number of datasets being released is 887. We now describe the dHCP image acquisition and processing protocols, summarize the available imaging and collateral data, and provide information on how the data can be accessed.

12.
Hum Brain Mapp ; 43(7): 2249-2261, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35088920

RESUMEN

In the mature human brain, the neural processing related to different body parts is reflected in patterns of functional connectivity, which is strongest between functional homologs in opposite cortical hemispheres. To understand how this organization is first established, we investigated functional connectivity between limb regions in the sensorimotor cortex in 400 preterm and term infants aged across the equivalent period to the third trimester of gestation (32-45 weeks postmenstrual age). Masks were obtained from empirically derived functional responses in neonates from an independent data set. We demonstrate the early presence of a crude but spatially organized functional connectivity, that rapidly matures across the preterm period to achieve an adult-like configuration by the normal time of birth. Specifically, connectivity was strongest between homolog regions, followed by connectivity between adjacent regions (different limbs but same hemisphere) already in the preterm brain, and increased with age. These changes were specific to the sensorimotor network. Crucially, these trajectories were strongly dependent on age more than age of birth. This demonstrates that during the perinatal period the sensorimotor cortex undergoes preprogrammed changes determining the functional movement organization that are not altered by preterm birth in absence of brain injury.


Asunto(s)
Nacimiento Prematuro , Corteza Sensoriomotora , Adulto , Encéfalo/fisiología , Mapeo Encefálico , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Vías Nerviosas/fisiología , Corteza Sensoriomotora/diagnóstico por imagen
13.
Cereb Cortex ; 32(17): 3799-3815, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-34958675

RESUMEN

Pain assessment in preterm infants is challenging as behavioral, autonomic, and neurophysiological measures of pain are reported to be less sensitive and specific than in term infants. Understanding the pattern of preterm infants' noxious-evoked responses is vital to improve pain assessment in this group. This study investigated the discriminability and development of multimodal noxious-evoked responses in infants aged 28-40 weeks postmenstrual age. A classifier was trained to discriminate responses to a noxious heel lance from a nonnoxious control in 47 infants, using measures of facial expression, brain activity, heart rate, and limb withdrawal, and tested in two independent cohorts with a total of 97 infants. The model discriminates responses to the noxious from the nonnoxious procedure with an overall accuracy of 0.76-0.84 and an accuracy of 0.78-0.79 in the 28-31-week group. Noxious-evoked responses have distinct developmental patterns. Heart rate responses increase in magnitude with age, while noxious-evoked brain activity undergoes three distinct developmental stages, including a previously unreported transitory stage consisting of a negative event-related potential between 30 and 33 weeks postmenstrual age. These findings demonstrate that while noxious-evoked responses change across early development, infant responses to noxious and nonnoxious stimuli are discriminable in prematurity.


Asunto(s)
Encéfalo , Recien Nacido Prematuro , Encéfalo/fisiología , Niño , Potenciales Evocados , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro/fisiología , Dolor , Dimensión del Dolor
14.
Neuroimage Clin ; 33: 102914, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34915328

RESUMEN

Prematurity can result in widespread neurodevelopmental impairment, with the impact of premature extrauterine exposure on brain function detectable in infancy. A range of neurodynamic and haemodynamic functional brain measures have previously been employed to study the neurodevelopmental impact of prematurity, with methodological and analytical heterogeneity across studies obscuring how multiple sensory systems are affected. Here, we outline a standardised template analysis approach to measure evoked response magnitudes for visual, tactile, and noxious stimulation in individual infants (n = 15) using EEG. By applying these templates longitudinally to an independent cohort of very preterm infants (n = 10), we observe that the evoked response template magnitudes are significantly associated with age-related maturation. Finally, in a cross-sectional study we show that the visual and tactile response template magnitudes differ between a cohort of infants who are age-matched at the time of study but who differ according to whether they are born during the very preterm or late preterm period (n = 10 and 8 respectively). These findings demonstrate the significant impact of premature extrauterine exposure on brain function and suggest that prematurity can accelerate maturation of the visual and tactile sensory system in infants born very prematurely. This study highlights the value of using a standardised multi-modal evoked-activity analysis approach to assess premature neurodevelopment, and will likely complement resting-state EEG and behavioural assessments in the study of the functional impact of developmental care interventions.


Asunto(s)
Enfermedades del Prematuro , Recien Nacido Prematuro , Encéfalo/fisiología , Estudios Transversales , Humanos , Lactante , Recién Nacido , Órganos de los Sentidos
15.
Neuroimage ; 243: 118488, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34419595

RESUMEN

INTRODUCTION: The dynamic nature and complexity of the cellular events that take place during the last trimester of pregnancy make the developing cortex particularly vulnerable to perturbations. Abrupt interruption to normal gestation can lead to significant deviations to many of these processes, resulting in atypical trajectory of cortical maturation in preterm birth survivors. METHODS: We sought to first map typical cortical micro- and macrostructure development using invivo MRI in a large sample of healthy term-born infants scanned after birth (n = 259). Then we offer a comprehensive characterization of the cortical consequences of preterm birth in 76 preterm infants scanned at term-equivalent age (37-44 weeks postmenstrual age). We describe the group-average atypicality, the heterogeneity across individual preterm infants, and relate individual deviations from normative development to age at birth and neurodevelopment at 18 months. RESULTS: In the term-born neonatal brain, we observed heterogeneous and regionally specific associations between age at scan and measures of cortical morphology and microstructure, including rapid surface expansion, greater cortical thickness, lower cortical anisotropy and higher neurite orientation dispersion. By term-equivalent age, preterm infants had on average increased cortical tissue water content and reduced neurite density index in the posterior parts of the cortex, and greater cortical thickness anteriorly compared to term-born infants. While individual preterm infants were more likely to show extreme deviations (over 3.1 standard deviations) from normative cortical maturation compared to term-born infants, these extreme deviations were highly variable and showed very little spatial overlap between individuals. Measures of regional cortical development were associated with age at birth, but not with neurodevelopment at 18 months. CONCLUSION: We showed that preterm birth alters cortical micro- and macrostructural maturation near the time of full-term birth. Deviations from normative development were highly variable between individual preterm infants.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Recien Nacido Prematuro/crecimiento & desarrollo , Imagen por Resonancia Magnética/métodos , Nacimiento Prematuro/diagnóstico por imagen , Anisotropía , Encéfalo/crecimiento & desarrollo , Grosor de la Corteza Cerebral , Femenino , Edad Gestacional , Humanos , Lactante , Recién Nacido , Masculino , Embarazo , Tercer Trimestre del Embarazo
17.
Nat Commun ; 12(1): 2744, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980860

RESUMEN

Understanding the neurophysiology underlying neonatal responses to noxious stimulation is central to improving early life pain management. In this neonatal multimodal MRI study, we use resting-state and diffusion MRI to investigate inter-individual variability in noxious-stimulus evoked brain activity. We observe that cerebral haemodynamic responses to experimental noxious stimulation can be predicted from separately acquired resting-state brain activity (n = 18). Applying this prediction model to independent Developing Human Connectome Project data (n = 215), we identify negative associations between predicted noxious-stimulus evoked responses and white matter mean diffusivity. These associations are subsequently confirmed in the original noxious stimulation paradigm dataset, validating the prediction model. Here, we observe that noxious-stimulus evoked brain activity in healthy neonates is coupled to resting-state activity and white matter microstructure, that neural features can be used to predict responses to noxious stimulation, and that the dHCP dataset could be utilised for future exploratory research of early life pain system neurophysiology.


Asunto(s)
Encéfalo/fisiología , Nocicepción/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Conectoma , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Modelos Neurológicos , Red Nerviosa , Acoplamiento Neurovascular , Dolor/fisiopatología , Descanso/fisiología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiología
18.
Brain ; 144(7): 2199-2213, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-33734321

RESUMEN

The Developing Human Connectome Project is an Open Science project that provides the first large sample of neonatal functional MRI data with high temporal and spatial resolution. These data enable mapping of intrinsic functional connectivity between spatially distributed brain regions under normal and adverse perinatal circumstances, offering a framework to study the ontogeny of large-scale brain organization in humans. Here, we characterize in unprecedented detail the maturation and integrity of resting state networks (RSNs) at term-equivalent age in 337 infants (including 65 born preterm). First, we applied group independent component analysis to define 11 RSNs in term-born infants scanned at 43.5-44.5 weeks postmenstrual age (PMA). Adult-like topography was observed in RSNs encompassing primary sensorimotor, visual and auditory cortices. Among six higher-order, association RSNs, analogues of the adult networks for language and ocular control were identified, but a complete default mode network precursor was not. Next, we regressed the subject-level datasets from an independent cohort of infants scanned at 37-43.5 weeks PMA against the group-level RSNs to test for the effects of age, sex and preterm birth. Brain mapping in term-born infants revealed areas of positive association with age across four of six association RSNs, indicating active maturation in functional connectivity from 37 to 43.5 weeks PMA. Female infants showed increased connectivity in inferotemporal regions of the visual association network. Preterm birth was associated with striking impairments of functional connectivity across all RSNs in a dose-dependent manner; conversely, connectivity of the superior parietal lobules within the lateral motor network was abnormally increased in preterm infants, suggesting a possible mechanism for specific difficulties such as developmental coordination disorder, which occur frequently in preterm children. Overall, we found a robust, modular, symmetrical functional brain organization at normal term age. A complete set of adult-equivalent primary RSNs is already instated, alongside emerging connectivity in immature association RSNs, consistent with a primary-to-higher order ontogenetic sequence of brain development. The early developmental disruption imposed by preterm birth is associated with extensive alterations in functional connectivity.


Asunto(s)
Encéfalo/anatomía & histología , Conectoma , Red Nerviosa/anatomía & histología , Vías Nerviosas/anatomía & histología , Femenino , Humanos , Recién Nacido , Recien Nacido Prematuro , Imagen por Resonancia Magnética , Masculino , Neurogénesis/fisiología
19.
J Neurosci ; 41(5): 1092-1104, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33436528

RESUMEN

The World Health Organization promotes physical exercise and a healthy lifestyle as means to improve youth development. However, relationships between physical lifestyle and human brain development are not fully understood. Here, we asked whether a human brain-physical latent mode of covariation underpins the relationship between physical activity, fitness, and physical health measures with multimodal neuroimaging markers. In 50 12-year old school pupils (26 females), we acquired multimodal whole-brain MRI, characterizing brain structure, microstructure, function, myelin content, and blood perfusion. We also acquired physical variables measuring objective fitness levels, 7 d physical activity, body mass index, heart rate, and blood pressure. Using canonical correlation analysis, we unravel a latent mode of brain-physical covariation, independent of demographics, school, or socioeconomic status. We show that MRI metrics with greater involvement in this mode also showed spatially extended patterns across the brain. Specifically, global patterns of greater gray matter perfusion, volume, cortical surface area, greater white matter extra-neurite density, and resting state networks activity covaried positively with measures reflecting a physically active phenotype (high fit, low sedentary individuals). Showing that a physically active lifestyle is linked with systems-level brain MRI metrics, these results suggest widespread associations relating to several biological processes. These results support the notion of close brain-body relationships and underline the importance of investigating modifiable lifestyle factors not only for physical health but also for brain health early in adolescence.SIGNIFICANCE STATEMENT An active lifestyle is key for healthy development. In this work, we answer the following question: How do brain neuroimaging markers relate with young adolescents' level of physical activity, fitness, and physical health? Combining advanced whole-brain multimodal MRI metrics with computational approaches, we show a robust relationship between physically active lifestyles and spatially extended, multimodal brain imaging-derived phenotypes. Suggesting a wider effect on brain neuroimaging metrics than previously thought, this work underlies the importance of studying physical lifestyle, as well as other brain-body relationships in an effort to foster brain health at this crucial stage in development.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Ejercicio Físico/fisiología , Estilo de Vida Saludable/fisiología , Imagen Multimodal/métodos , Acelerometría/métodos , Acelerometría/tendencias , Adolescente , Niño , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/tendencias , Masculino , Imagen Multimodal/tendencias
20.
Biol Rev Camb Philos Soc ; 96(1): 153-161, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32441454

RESUMEN

Australia's wildlife is being considerably impacted by introduced mammalian predators such as cats (Felis catus), dogs (Canis lupus familiaris), and foxes (Vulpes vulpes). This is often attributed to native wildlife being naïve to these introduced predators. A systematic review of the literature reveals that native metatherians (body mass range 0.02-25 kg) do not recognise, and show relaxed antipredator behaviours towards, native and some introduced mammalian predators. Native eutherians (all with body mass < 2 kg), however, do appear to recognise and exhibit antipredator behaviours towards both native and introduced predators. Based on our findings, we propose a novel theory, the 'Relaxed Predation Theory'. Our new theory is based on the absence of large mammalian predators leading to reduced predation pressure in Australia during the past 40000-50000 years, and on three key differences between Australian metatherians and eutherians: size, sex, and brains. In light of this Relaxed Predation Theory, we make a number of recommendations for the conservation of Australian wildlife: (i) predator avoidance training of suitable species; (ii) exclusion fencing to exclude some, but not all, predators to facilitate the development of antipredator behaviours; (iii) captive breeding programs to prevent the extinction of some species; and (iv) reintroduction of Australia's larger predators, potentially to compete with and displace introduced predators. A more detailed understanding of the responses of Australian mammals to predators will hopefully contribute to the improved conservation of susceptible species.


Asunto(s)
Zorros , Conducta Predatoria , Animales , Australia , Gatos , Perros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...