Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Biochem Biophys ; 735: 109518, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36639008

RESUMEN

The aromatic amino acid hydroxylases phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase are non-heme iron enzymes that catalyze key physiological reactions. This review discusses the present understanding of the common catalytic mechanism of these enzymes and recent advances in understanding the relationship between their structures and their regulation.


Asunto(s)
Oxigenasas de Función Mixta , Fenilalanina Hidroxilasa , Oxigenasas de Función Mixta/química , Triptófano Hidroxilasa/química , Triptófano Hidroxilasa/metabolismo , Tirosina 3-Monooxigenasa/química , Tirosina 3-Monooxigenasa/metabolismo , Fenilalanina Hidroxilasa/química , Fenilalanina Hidroxilasa/metabolismo , Aminoácidos Aromáticos , Catálisis
2.
Arch Biochem Biophys ; 729: 109378, 2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-35995215

RESUMEN

Phenylalanine hydroxylase (PheH) is a pterin-dependent, mononuclear nonheme iron(II) oxygenase that uses the oxidative power of O2 to hydroxylate phenylalanine to form tyrosine. PheH is a member of a superfamily of O2-activating enzymes that utilizes a common metal binding motif: the 2-His-1-carboxylate facial triad. Like most members of this superfamily, binding of substrates to PheH results in a reorganization of its active site to allow O2 activation. Exploring the energetics of each step before O2 activation can provide mechanistic insight into the initial steps that support the highly specific O2 activation pathway carried out by this metalloenzyme. Here the thermal stability of PheH and its substrate complexes were investigated under an anaerobic environment by using differential scanning calorimetry. In context with known binding constants for PheH, a thermodynamic cycle associated with iron(II), tetrahydrobiopterin (BH4), and phenylalanine binding to the active site was generated, showing a distinctive cooperativity between the binding of BH4 and Phe. The addition of phenylalanine and BH4 to PheH·Fe increased the stability of this enzyme (ΔTm of 8.5 (±0.7) °C with an associated δΔH of 43.0 (±2.9) kcal/mol). The thermodynamic data presented here gives insight into the complicated interactions between metal center, cofactor, and substrate, and how this interplay sets the stage for highly specific, oxidative C-H activation in this enzyme.


Asunto(s)
Metaloproteínas , Fenilalanina Hidroxilasa , Biopterinas/análogos & derivados , Chromobacterium , Compuestos Ferrosos , Hierro/metabolismo , Cinética , Metaloproteínas/metabolismo , Fenilalanina/metabolismo , Fenilalanina Hidroxilasa/química , Fenilalanina Hidroxilasa/metabolismo , Pterinas/química , Pterinas/metabolismo , Termodinámica , Tirosina
4.
Arch Biochem Biophys ; 676: 108136, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31604072

RESUMEN

The flavoprotein trimethylamine dehydrogenase is a member of a small class of flavoproteins that catalyze amine oxidation and transfer the electrons through an Fe/S center to an external oxidant. The mechanism of amine oxidation by this family of enzymes has not been established. Here, we describe the use of pH and kinetic isotope effects with the slow substrate dimethylamine to study the mechanism. The data are consistent with the neutral amine being the form of the substrate that binds productively at the pH optimum, since the pKa seen in the kcat/Kamine pH profile for a group that must be unprotonated matches the pKa of dimethylamine. The D(kcat/Kamine) value decreases to unity as the pH decreases. This suggests the presence of an alternative pathway at low pH, in which the protonated substrate binds and is then deprotonated by an active-site residue prior to oxidation. The kcat and Dkcat values both decrease to limiting values at low pH with similar pKa values. This is consistent with a step other than amine oxidation becoming rate-limiting for turnover.


Asunto(s)
Deuterio/química , Dimetilaminas/química , Dimetilaminas/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Biocatálisis , Concentración de Iones de Hidrógeno , Cinética , Methylophilus methylotrophus/enzimología , Unión Proteica , Especificidad por Sustrato
5.
Biochemistry ; 58(21): 2534-2541, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31046245

RESUMEN

The flavoprotein d-6-hydroxynicotine oxidase catalyzes an early step in the oxidation of ( R)-nicotine, the oxidation of a carbon-nitrogen bond in the pyrrolidine ring of ( R)-6-hydroxynicotine. The enzyme is a member of the vanillyl alcohol oxidase/ p-cresol methylhydroxylase family of flavoproteins. The effects of substrate modifications on the steady-state and rapid-reaction kinetic parameters are not consistent with the quinone-methide mechanism of p-cresol methylhydroxylase. There is no solvent isotope effect on the kcat/ Kamine value with either ( R)-6-hydroxynicotine or the slower substrate ( R)-6-hydroxynornicotine. The effect of pH on the rapid-reaction kinetic parameters establishes that only the neutral form of the substrate and the correctly protonated form of the enzyme bind. The active-site residues Lys348, Glu350, and Glu352 are all properly positioned for substrate binding. The K348M substitution has only a small effect on the kinetic parameters; the E350A and E350Q substitutions decrease the kcat/ Kamine value by ∼20- and ∼220-fold, respectively, and the E352Q substitution decreases this parameter ∼3800-fold. The kcat/ Kamine-pH profile is bell-shaped. The p Ka values in that profile are altered by replacement of ( R)-6-hydroxynicotine with ( R)-6-hydroxynornicotine as the substrate and by the substitutions for Glu350 and Glu352, although the profiles remain bell-shaped. The results are consistent with a network of hydrogen-bonded residues in the active site being involved in binding the neutral form of the amine substrate, followed by the transfer of a hydride from the amine to the flavin.


Asunto(s)
Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Nicotina/análogos & derivados , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Biocatálisis , Dominio Catalítico , Escherichia coli/metabolismo , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Isótopos/metabolismo , Cinética , Micrococcaceae/metabolismo , Nicotina/química , Nicotina/metabolismo , Oxidación-Reducción , Plásmidos/genética , Especificidad por Sustrato
6.
J Biol Chem ; 294(12): 4359-4367, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30674554

RESUMEN

The naturally occurring R68S substitution of phenylalanine hydroxylase (PheH) causes phenylketonuria (PKU). However, the molecular basis for how the R68S variant leads to PKU remains unclear. Kinetic characterization of R68S PheH establishes that the enzyme is fully active in the absence of allosteric binding of phenylalanine, in contrast to the WT enzyme. Analytical ultracentrifugation establishes that the isolated regulatory domain of R68S PheH is predominantly monomeric in the absence of phenylalanine and dimerizes in its presence, similar to the regulatory domain of the WT enzyme. Fluorescence and small-angle X-ray scattering analyses establish that the overall conformation of the resting form of R68S PheH is different from that of the WT enzyme. The data are consistent with the substitution disrupting the interface between the catalytic and regulatory domains of the enzyme, shifting the equilibrium between the resting and activated forms ∼200-fold, so that the resting form of R68S PheH is ∼70% in the activated conformation. However, R68S PheH loses activity 2 orders of magnitude more rapidly than the WT enzyme at 37 °C and is significantly more sensitive to proteolysis. We propose that, even though this substitution converts the enzyme to a constitutively active enzyme, it results in PKU because of the decrease in protein stability.


Asunto(s)
Fenilalanina Hidroxilasa/metabolismo , Fenilcetonurias/metabolismo , Regulación Alostérica , Electroforesis en Gel de Poliacrilamida , Estabilidad de Enzimas , Cinética , Mutación , Fenilalanina Hidroxilasa/química , Fenilalanina Hidroxilasa/genética , Conformación Proteica , Dispersión del Ángulo Pequeño , Espectrometría de Fluorescencia , Ultracentrifugación , Difracción de Rayos X
7.
Biochemistry ; 57(44): 6274-6277, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30346142

RESUMEN

Liver phenylalanine hydroxylase (PheH) is an allosteric enzyme that is activated by phenylalanine. The enzyme is also phosphorylated by protein kinase A, but the effects of phosphorylation are unclear. Recent structural studies ( Meisburger et al. ( 2016 ) J. Amer. Chem. Soc. 138 , 6506 - 6516 ) support a model in which activation of the enzyme involves dimerization of the regulatory domains, creating the allosteric site for phenylalanine at the dimer interface. This conformational change also results in a change in the fluorescence of the protein that can be used to monitor activation. The kinetics of activation of PheH are biphasic over a range of phenylalanine concentrations. These data are well-described by a model involving an initial equilibrium between the resting form and the activated conformation, with a value of the equilibrium constant for formation of the activated conformation, L, equal to 0.007, followed by binding of two molecules of phenylalanine. Phosphorylation increases L 10-fold by increasing the rate constant for conversion of the resting form to the activated form. The results provide functional support for the previous structural model, identify the specific effect of phosphorylation on the enzyme, and rationalize the lack of change in the protein structure upon phosphorylation.


Asunto(s)
Fenilalanina Hidroxilasa/química , Fenilalanina Hidroxilasa/metabolismo , Fenilalanina/metabolismo , Conformación Proteica , Regulación Alostérica , Sitio Alostérico , Humanos , Cinética , Modelos Moleculares , Fosforilación , Multimerización de Proteína
8.
Biophys Chem ; 242: 22-27, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30195215

RESUMEN

A key component of enzyme function experiments is reporting of considerable metadata, to allow other researchers to replicate, interpret properly or use fully the results. This paper evaluates the completeness of enzyme function data reporting for reproducibility. We present a detailed examination of 11 recent papers (and their supplementary material) from two leading journals. We found that in every paper we were not able to collect some critical information necessary to reproduce the enzyme function findings. Study of 100 papers used by the SABIO-RK database confirmed some of the most common omissions: concentration of enzyme or its substrates, identity of counter-ions in buffers. A computer system should be better at preventing such omissions, helping secure the scientific record. Many of the omissions found would be trapped by the currently available version of STRENDA DB.


Asunto(s)
Enzimas/metabolismo , Edición , Bases de Datos Factuales , Pruebas de Enzimas/normas , Reproducibilidad de los Resultados
9.
Beilstein J Org Chem ; 14: 2295-2307, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30202483

RESUMEN

Because of nicotine's toxicity and the high levels found in tobacco and in the waste from tobacco processing, there is a great deal of interest in identifying bacteria capable of degrading it. A number of microbial pathways have been identified for nicotine degradation. The first and best-understood is the pyridine pathway, best characterized for Arthrobacter nicotinovorans, in which the first reaction is hydroxylation of the pyridine ring. The pyrrolidine pathway, which begins with oxidation of a carbon-nitrogen bond in the pyrrolidine ring, was subsequently characterized in a number of pseudomonads. Most recently, a hybrid pathway has been described, which incorporates the early steps in the pyridine pathway and ends with steps in the pyrrolidine pathway. This review summarizes the present status of our understanding of these pathways, focusing on what is known about the individual enzymes involved.

10.
FEBS J ; 285(12): 2193-2204, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29498804

RESUMEN

Standards for reporting enzymology data (STRENDA) DB is a validation and storage system for enzyme function data that incorporates the STRENDA Guidelines. It provides authors who are preparing a manuscript with a user-friendly, web-based service that checks automatically enzymology data sets entered in the submission form that they are complete and valid before they are submitted as part of a publication to a journal.


Asunto(s)
Bases de Datos de Proteínas/normas , Pruebas de Enzimas/normas , Enzimas/metabolismo , Interfaz Usuario-Computador , Animales , Bacterias/metabolismo , Pruebas de Enzimas/métodos , Enzimas/química , Enzimas/clasificación , Hongos/metabolismo , Guías como Asunto , Humanos , Difusión de la Información/métodos , Cinética , Publicaciones Periódicas como Asunto , Plantas/metabolismo , Estudios de Validación como Asunto
11.
J Am Chem Soc ; 140(15): 5185-5192, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29589922

RESUMEN

Solution studies of the aromatic amino acid hydroxylases are consistent with the FeIVO intermediate not forming until both the amino acid and tetrahydropterin substrates have bound. Structural studies have shown that the positions of active-site loops differs significantly between the free enzyme and the enzyme-amino acid-tetrahydropterin complex. In tryptophan hydroxylase (TrpH) these mobile loops contain residues 124-134 and 365-371, with a key interaction involving Ile366. The I366N mutation in TrpH results in decreases of 1-2 orders of magnitude in the kcat and kcat/ Km values. Single turnover analyses establish that the limiting rate constant for turnover is product release for the wild-type enzyme but is formation of the first detectable intermediate I in catalysis in the mutant enzyme. The mutation does not alter the kinetics of NO binding to the ternary complex nor does it uncouple FeIVO formation from amino acid hydroxylation. The effects on the kcat value of wild-type TrpH of changing viscosity are consistent with rate-limiting product release. While the effect of viscosity on the kcat/ KO2 value is small, consistent with reversible oxygen binding, the effects on the kcat/ Km values for tryptophan and the tetrahydropterin are large, with the latter value exceeding the expected limit and varying with the identity of the viscogen. In contrast, the kinetic parameters of I366N TrpH show small changes with viscosity. The results are consistent with binding of the amino acid and pterin substrate to form the ternary complex being directly coupled to closure of loops over the active site and formation of the reactive complex. The mutation destabilizes this initial event.

12.
Methods Enzymol ; 596: 149-161, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28911769

RESUMEN

Kinetic isotope effects (KIEs) provide powerful probes of the mechanisms of enzyme-catalyzed reactions. In this chapter, we describe the use of continuous-flow mass spectrometry to determine the deuterium KIE for the enzyme N-acetylpolyamine oxidase based on the ratio of labeled and unlabeled products in mass spectra of whole reaction mixtures.


Asunto(s)
Biocatálisis , Deuterio/química , Espectrometría de Masas/métodos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/química , Pruebas de Enzimas/instrumentación , Pruebas de Enzimas/métodos , Cinética , Espectrometría de Masas/instrumentación , Poliamino Oxidasa
13.
Arch Biochem Biophys ; 632: 41-46, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28529198

RESUMEN

The flavoprotein nitroalkane oxidase catalyzes the oxidation of neutral nitroalkanes to the corresponding aldehydes or ketones, releasing nitrite and transferring electrons to O2 to form H2O2. A combination of solution and structural analyses have provided a detailed understanding of the mechanism of this enzyme.


Asunto(s)
Dioxigenasas/química , Flavoproteínas/química , Aldehídos/química , Aldehídos/metabolismo , Catálisis , Dioxigenasas/metabolismo , Transporte de Electrón , Flavoproteínas/metabolismo , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Cetonas/química , Cetonas/metabolismo , Nitritos/química , Nitritos/metabolismo , Oxígeno/química , Oxígeno/metabolismo , Relación Estructura-Actividad
14.
J Biol Chem ; 292(27): 11154-11164, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28536265

RESUMEN

The antischistosomal prodrug oxamniquine is activated by a sulfotransferase (SULT) in the parasitic flatworm Schistosoma mansoni. Of the three main human schistosome species, only S. mansoni is sensitive to oxamniquine therapy despite the presence of SULT orthologs in Schistosoma hematobium and Schistosoma japonicum The reason for this species-specific drug action has remained a mystery for decades. Here we present the crystal structures of S. hematobium and S. japonicum SULTs, including S. hematobium SULT in complex with oxamniquine. We also examined the activity of the three enzymes in vitro; surprisingly, all three are active toward oxamniquine, yet we observed differences in catalytic efficiency that implicate kinetics as the determinant for species-specific toxicity. These results provide guidance for designing oxamniquine derivatives to treat infection caused by all species of schistosome to combat emerging resistance to current therapy.


Asunto(s)
Resistencia a Medicamentos , Proteínas del Helminto/química , Oxamniquina , Schistosoma haematobium/enzimología , Schistosoma japonicum/enzimología , Sulfotransferasas/química , Animales , Cristalografía por Rayos X , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Schistosoma haematobium/genética , Schistosoma japonicum/genética , Sulfotransferasas/genética
15.
Biochemistry ; 56(14): 2024-2030, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28355481

RESUMEN

The flavoprotein d-amino acid oxidase has long served as a paradigm for understanding the mechanism of oxidation of amino acids by flavoproteins. Recently, a mutant d-amino acid oxidase (Y228L/R283G) that catalyzed the oxidation of amines rather than amino acids was described [Yasukawa, K., et al. (2014) Angew. Chem., Int. Ed. 53, 4428-4431]. We describe here the use of pH and kinetic isotope effects with (R)-α-methylbenzylamine as a substrate to determine whether the mutant enzyme utilizes the same catalytic mechanism as the wild-type enzyme. The effects of pH on the steady-state and rapid-reaction kinetics establish that the neutral amine is the substrate, while an active-site residue, likely Tyr224, must be uncharged for productive binding. There is no solvent isotope effect on the kcat/Km value for the amine, consistent with the neutral amine being the substrate. The deuterium isotope effect on the kcat/Km value is pH-independent, with an average value of 5.3, similar to values found with amino acids as substrates for the wild-type enzyme and establishing that there is no commitment to catalysis with this substrate. The kcat/KO2 value is similar to that seen with amino acids as the substrate, consistent with the oxidative half-reaction being unperturbed by the mutation and with flavin oxidation preceding product release. All of the data are consistent with the mutant enzyme utilizing the same mechanism as the wild-type enzyme, transfer of hydride from the neutral amine to the flavin.


Asunto(s)
D-Aminoácido Oxidasa/química , Proteínas Fúngicas/química , Glucosa Oxidasa/química , Monoaminooxidasa/química , Fenetilaminas/química , Animales , Aspergillus niger/química , Aspergillus niger/enzimología , Biocatálisis , Dominio Catalítico , D-Aminoácido Oxidasa/genética , D-Aminoácido Oxidasa/metabolismo , Medición de Intercambio de Deuterio , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expresión Génica , Glucosa Oxidasa/genética , Glucosa Oxidasa/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Monoaminooxidasa/genética , Monoaminooxidasa/metabolismo , Fenetilaminas/metabolismo , Relación Estructura-Actividad , Porcinos , Termodinámica
16.
Biochemistry ; 56(6): 869-875, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28080034

RESUMEN

The flavoenzyme l-6-hydroxynicotine oxidase is a member of the monoamine oxidase family that catalyzes the oxidation of (S)-6-hydroxynicotine to 6-hydroxypseudooxynicotine during microbial catabolism of nicotine. While the enzyme has long been understood to catalyze oxidation of the carbon-carbon bond, it has recently been shown to catalyze oxidation of a carbon-nitrogen bond [Fitzpatrick, P. F., et al. (2016) Biochemistry 55, 697-703]. The effects of pH and mutagenesis of active site residues have now been utilized to study the mechanism and roles of active site residues. Asn166 and Tyr311 bind the substrate, while Lys287 forms a water-mediated hydrogen bond with flavin N5. The N166A and Y311F mutations result in ∼30- and ∼4-fold decreases in kcat/Km and kred for (S)-6-hydroxynicotine, respectively, with larger effects on the kcat/Km value for (S)-6-hydroxynornicotine. The K287M mutation results in ∼10-fold decreases in these parameters and a 6000-fold decrease in the kcat/Km value for oxygen. The shapes of the pH profiles are not altered by the N166A and Y311F mutations. There is no solvent isotope effect on the kcat/Km value for amines. The results are consistent with a model in which both the charged and neutral forms of the amine can bind, with the former rapidly losing a proton to a hydrogen bond network of water and amino acids in the active site prior to the transfer of hydride to the flavin.


Asunto(s)
Arthrobacter/enzimología , Proteínas Bacterianas/metabolismo , Flavoproteínas/metabolismo , Modelos Moleculares , Nicotina/análogos & derivados , Oxidorreductasas actuantes sobre Donantes de Grupos CH-NH2/metabolismo , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Dominio Catalítico , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/metabolismo , Flavoproteínas/química , Flavoproteínas/genética , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Hidrólisis , Lisina/química , Mutagénesis Sitio-Dirigida , Mutación , Nicotina/química , Nicotina/metabolismo , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos CH-NH2/química , Oxidorreductasas actuantes sobre Donantes de Grupos CH-NH2/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Solventes/química , Tirosina/química
17.
Biochemistry ; 55(49): 6848-6857, 2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27951651

RESUMEN

The pterin-dependent aromatic amino acid hydroxylases are non-heme iron enzymes that catalyze the hydroxylation of the aromatic side chain of their respective substrates using an FeIVO intermediate. While the eukaryotic enzymes are homotetramers with complex regulatory properties, bacterial phenylalanine hydroxylases are monomers that lack regulatory domains. As a result, the bacterial enzymes are more tractable for mechanistic studies. Using single turnover methods, the complete kinetic mechanism and intrinsic rate constants for Chromobacterium violaceum phenylalanine hydroxylase have been determined with both tetrahydrobiopterin and 6-methyltetrahyropterin as substrates. In addition the kinetics of formation of the enzyme-pterin complex have been determined with the unreactive 5-deaza, 6-methyltetrahydropterin. For all three pterins, binding of phenylalanine and pterin occurs in random order with binding of the pterin first the preferred pathway. The reaction of the ternary enzyme-phenylalanine-tetrahydropterin complex can be described by a mechanism involving reversible oxygen binding, formation of an early intermediate preceding formation of the FeIVO, and rate-limiting product release.


Asunto(s)
Bacterias/enzimología , Fenilalanina Hidroxilasa/metabolismo , Cinética , Oxigenasas/química
18.
Proc Natl Acad Sci U S A ; 113(51): 14727-14732, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27930312

RESUMEN

Intron lariats are circular, branched RNAs (bRNAs) produced during pre-mRNA splicing. Their unusual chemical and topological properties arise from branch-point nucleotides harboring vicinal 2',5'- and 3',5'-phosphodiester linkages. The 2',5'-bonds must be hydrolyzed by the RNA debranching enzyme Dbr1 before spliced introns can be degraded or processed into small nucleolar RNA and microRNA derived from intronic RNA. Here, we measure the activity of Dbr1 from Entamoeba histolytica by using a synthetic, dark-quenched bRNA substrate that fluoresces upon hydrolysis. Purified enzyme contains nearly stoichiometric equivalents of Fe and Zn per polypeptide and demonstrates turnover rates of ∼3 s-1 Similar rates are observed when apo-Dbr1 is reconstituted with Fe(II)+Zn(II) under aerobic conditions. Under anaerobic conditions, a rate of ∼4.0 s-1 is observed when apoenzyme is reconstituted with Fe(II). In contrast, apo-Dbr1 reconstituted with Mn(II) or Fe(II) under aerobic conditions is inactive. Diffraction data from crystals of purified enzyme using X-rays tuned to the Fe absorption edge show Fe partitions primarily to the ß-pocket and Zn to the α-pocket. Structures of the catalytic mutant H91A in complex with 7-mer and 16-mer synthetic bRNAs reveal bona fide RNA branchpoints in the Dbr1 active site. A bridging hydroxide is in optimal position for nucleophilic attack of the scissile phosphate. The results clarify uncertainties regarding structure/function relationships in Dbr1 enzymes, and the fluorogenic probe permits high-throughput screening for inhibitors that may hold promise as treatments for retroviral infections and neurodegenerative disease.


Asunto(s)
Cristalografía por Rayos X/métodos , Entamoeba histolytica/enzimología , Proteínas Protozoarias/química , ARN Nucleotidiltransferasas/química , ARN/química , Catálisis , Cristalización , Hidrólisis , Intrones , Hierro/química , Cinética , Espectrometría de Masas , Mutación , Péptidos/química , Precursores del ARN/química , Empalme del ARN , ARN Circular , Rayos X , Zinc/química
19.
Arch Biochem Biophys ; 612: 115-119, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27815088

RESUMEN

A large number of flavoproteins catalyze the oxidation of amines. Because of the importance of these enzymes in metabolism, their mechanisms have previously been studied using deuterium, nitrogen, and solvent isotope effects. While these results have been valuable for computational studies to distinguish among proposed mechanisms, a measure of the change at the reacting carbon has been lacking. We describe here the measurement of a 13C kinetic isotope effect for a representative amine oxidase, polyamine oxidase. The isotope effect was determined by analysis of the isotopic composition of the unlabeled substrate, N, N'-dibenzyl-1,4-diaminopropane, to obtain a pH-independent value of 1.025. The availability of a 13C isotope effect for flavoprotein-catalyzed amine oxidation provides the first measure of the change in bond order at the carbon involved in this carbon-hydrogen bond cleavage and will be of value to understanding the transition state structure for this class of enzymes.


Asunto(s)
Isótopos de Carbono/química , Flavinas/química , Monoaminooxidasa/química , Animales , Escherichia coli/metabolismo , Flavoproteínas/química , Concentración de Iones de Hidrógeno , Cinética , Espectrometría de Masas , Ratones , Oxidorreductasas/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/química , Poliaminas/química , Temperatura , Poliamino Oxidasa
20.
Nat Chem Biol ; 12(11): 908-910, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27669419

RESUMEN

We describe a two-dimensional thermal proteome profiling strategy that can be combined with an orthogonal chemoproteomics approach to enable comprehensive target profiling of the marketed histone deacetylase inhibitor panobinostat. The N-hydroxycinnamide moiety is identified as critical for potent and tetrahydrobiopterin-competitive inhibition of phenylalanine hydroxylase leading to increases in phenylalanine and decreases in tyrosine levels. These findings provide a rationale for adverse clinical observations and suggest repurposing of the drug for treatment of tyrosinemia.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Indoles/farmacología , Fenilalanina Hidroxilasa/antagonistas & inhibidores , Temperatura , Relación Dosis-Respuesta a Droga , Células Hep G2 , Inhibidores de Histona Desacetilasas/química , Humanos , Ácidos Hidroxámicos/química , Indoles/química , Estructura Molecular , Panobinostat , Fenilalanina Hidroxilasa/química , Fenilalanina Hidroxilasa/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...