Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 384(6699): eadd6260, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38815015

RESUMEN

Abnormal calcium signaling is a central pathological component of Alzheimer's disease (AD). Here, we describe the identification of a class of compounds called ReS19-T, which are able to restore calcium homeostasis in cell-based models of tau pathology. Aberrant tau accumulation leads to uncontrolled activation of store-operated calcium channels (SOCCs) by remodeling septin filaments at the cell cortex. Binding of ReS19-T to septins restores filament assembly in the disease state and restrains calcium entry through SOCCs. In amyloid-ß and tau-driven mouse models of disease, ReS19-T agents restored synaptic plasticity, normalized brain network activity, and attenuated the development of both amyloid-ß and tau pathology. Our findings identify the septin cytoskeleton as a potential therapeutic target for the development of disease-modifying AD treatments.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Calcio , Homeostasis , Fármacos Neuroprotectores , Septinas , Proteínas tau , Animales , Humanos , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Calcio/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Citoesqueleto/metabolismo , Citoesqueleto/efectos de los fármacos , Modelos Animales de Enfermedad , Plasticidad Neuronal/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Septinas/metabolismo , Proteínas tau/metabolismo
2.
Alzheimers Dement ; 19(8): 3701-3717, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37132525

RESUMEN

This review discusses the driving principles that may underlie neurodegeneration in dementia, represented most dominantly by Alzheimer's disease (AD). While a myriad of different disease risk factors contribute to AD, these ultimately converge to a common disease outcome. Based on decades of research, a picture emerges where upstream risk factors combine in a feedforward pathophysiological cycle, culminating in a rise of cytosolic calcium concentration ([Ca2+ ]c ) that triggers neurodegeneration. In this framework, positive AD risk factors entail conditions, characteristics, or lifestyles that initiate or accelerate self-reinforcing cycles of pathophysiology, whereas negative risk factors or therapeutic interventions, particularly those mitigating elevated [Ca2+ ]c , oppose these effects and therefore have neuroprotective potential.


Asunto(s)
Enfermedad de Alzheimer , Calcio , Citosol , Animales , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Calcio/metabolismo , Citosol/metabolismo , Proteostasis , Factores de Riesgo , Proteínas tau/metabolismo
3.
Neuromolecular Med ; 25(1): 125-135, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36436129

RESUMEN

Lithium is a mood stabilizer broadly used to prevent and treat symptoms of mania and depression in people with bipolar disorder (BD). Little is known, however, about its mode of action. Here, we analyzed the impact of lithium on synaptic vesicle (SV) cycling at presynaptic terminals releasing glutamate, a neurotransmitter previously implicated in BD and other neuropsychiatric conditions. We used the pHluorin-based synaptic tracer vGpH and a fully automated image processing pipeline to quantify the effect of lithium on both SV exocytosis and endocytosis in hippocampal neurons. We found that lithium selectively reduces SV exocytic rates during electrical stimulation, and markedly slows down SV recycling post-stimulation. Analysis of single-bouton responses revealed the existence of functionally distinct excitatory synapses with varying sensitivity to lithium-some terminals show responses similar to untreated cells, while others are markedly impaired in their ability to recycle SVs. While the cause of this heterogeneity is unclear, these data indicate that lithium interacts with the SV machinery and influences glutamate release in a large fraction of excitatory synapses. Together, our findings show that lithium down modulates SV cycling, an effect consistent with clinical reports indicating hyperactivation of glutamate neurotransmission in BD.


Asunto(s)
Ácido Glutámico , Compuestos de Litio , Sinapsis , Vesículas Sinápticas , Compuestos de Litio/farmacología , Ácido Glutámico/metabolismo , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Transmisión Sináptica/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Trastorno Bipolar/metabolismo , Trastorno Bipolar/patología , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Hipocampo/patología , Exocitosis/efectos de los fármacos , Endocitosis/efectos de los fármacos , Animales , Ratas , Células Cultivadas
4.
Biol Open ; 11(9)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36222238

RESUMEN

De novo mutations (DNMs) in chromodomain helicase DNA binding protein 8 (CHD8) are associated with a specific subtype of autism characterized by enlarged heads and distinct cranial features. The vast majority of these DNMs are heterozygous loss-of-function mutations with high penetrance for autism. CHD8 is a chromatin remodeler that preferentially regulates expression of genes implicated in early development of the cerebral cortex. How CHD8 haploinsufficiency alters the normal developmental trajectory of the brain is poorly understood and debated. Using long-term single-cell imaging, we show that disruption of a single copy of CHD8 in human neural precursor cells (NPCs) markedly shortens the G1 phase of the cell cycle. Consistent with faster progression of CHD8+/- NPCs through G1 and the G1/S checkpoint, we observed increased expression of E cyclins and elevated phosphorylation of Erk in these mutant cells - two central signaling pathways involved in S phase entry. Thus, CHD8 keeps proliferation of NPCs in check by lengthening G1, and mono-allelic disruption of this gene alters cell-cycle timing in a way that favors self-renewing over neurogenic cell divisions. Our findings further predict enlargement of the neural progenitor pool in CHD8+/- developing brains, providing a mechanistic basis for macrocephaly in this autism subtype.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Células-Madre Neurales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Ciclo Celular/genética , División Celular , Cromatina/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fase G1 , Humanos , Células-Madre Neurales/metabolismo , Factores de Transcripción/metabolismo
5.
Bio Protoc ; 11(23): e4248, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-35005093

RESUMEN

Primary cilia are microtubule-based sensory organelles surrounded by membrane. They can detect mechanical and chemical stimuli. The last few years have uncovered cilia as unique signaling hubs that host a number of receptors and effector molecules. Thus, defining how specific proteins localize and are distributed along the cilium is critical to understanding its function. Quantitative immunofluorescence can be used to accurately assess the localization of receptors and signaling molecules within the primary cilia. However, image analysis can be time consuming, and there are limited programs that can accurately determine staining intensity along the cilia. To overcome these issues, we developed a series of MATLAB scripts to accurately measure staining intensity along the length of the cilia, in both a semi-automated and automated fashion. Here, we describe the scripts and include a protocol for image analysis for each. With these scripts, the protocols can be used to analyze the distribution of any ciliary protein using immunofluorescence images.

6.
Dis Model Mech ; 11(1)2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29208627

RESUMEN

Studying the complex mechanisms underlying breast cancer metastasis and therapy response necessitates relevant in vivo models, particularly syngeneic models with an intact immune system. Two syngeneic spontaneously metastatic sublines, D2A1-m1 and D2A1-m2, were generated from the poorly metastasising BALB/c-derived D2A1 cell line by serial in vivo passaging. In vivo and in vitro analyses revealed distinct and shared characteristics of the metastatic D2A1-m1 and D2A1-m2 sublines. In particular, D2A1-m1 cells are more aggressive in experimental metastasis assays, while D2A1-m2 cells are more efficient at disseminating from the primary tumour in spontaneous metastasis assays. Surprisingly, classical metastasis-associated in vitro phenotypes, such as enhanced proliferation, migration and invasion, are reduced in the sublines compared to the parental cell line. Further, evasion of immune control cannot fully explain their enhanced metastatic properties. By contrast, both sublines show increased resistance to apoptosis when cultured in non-adherent conditions and, for the D2A1-m2 subline, increased 3D tumour spheroid growth. Moreover, the enhanced spontaneous metastatic phenotype of the D2A1-m2 subline is associated with an increased ability to recruit an activated tumour stroma. The metastatic D2A1-m1 and D2A1-m2 cell lines provide additional syngeneic models for investigating the different steps of the metastatic cascade and thereby represent valuable tools for breast cancer researchers. Finally, this study highlights that morphology and cell behaviour in 2D cell-based assays cannot be used as a reliable predictor of metastatic behaviour in vivo.


Asunto(s)
Neoplasias Mamarias Animales/patología , Animales , Adhesión Celular , Línea Celular Tumoral , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Huésped Inmunocomprometido , Neoplasias Mamarias Animales/genética , Ratones Endogámicos BALB C , Metástasis de la Neoplasia , Células del Estroma/metabolismo , Células del Estroma/patología
7.
Neurobiol Learn Mem ; 138: 54-61, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27544849

RESUMEN

STIM2 is an integral membrane protein of the endoplasmic reticulum (ER) that regulates the activity of plasma membrane (PM) channels at ER-PM contact sites. Recent studies show that STIM2 promotes spine maturation and surface expression of the AMPA receptor (AMPAR) subunit GluA1, hinting at a probable role in synaptic plasticity. Here, we used a Stim2 cKO mouse to explore the function of STIM2 in Long-Term Potentiation (LTP) and Depression (LTD), two widely-studied models of synaptic plasticity implicated in information storage. We found that STIM2 is required for the stable expression of both LTP and LTD at CA3-CA1 hippocampal synapses. Altered plasticity in Stim2 cKO mice is associated with subtle alterations in the shape and density of dendritic spines in CA1 neurons. Further, surface delivery of GluA1 in response to LTP-inducing chemical manipulations was markedly reduced in excitatory neurons derived from Stim2 cKO mice. GluA1 endocytosis following chemically-induced LTD was also impaired in Stim2 cKO neurons. We conclude that STIM2 facilitates synaptic delivery and removal of AMPARs and regulates activity-dependent changes in synaptic strength through a unique mode of communication between the ER and the synapse.


Asunto(s)
Hipocampo/metabolismo , Plasticidad Neuronal/fisiología , Transporte de Proteínas/fisiología , Receptores AMPA/metabolismo , Molécula de Interacción Estromal 2/metabolismo , Sinapsis/metabolismo , Animales , Forma de la Célula/fisiología , Espinas Dendríticas/genética , Espinas Dendríticas/metabolismo , Retículo Endoplásmico/metabolismo , Masculino , Ratones , Ratones Noqueados , Neuronas/citología , Neuronas/metabolismo , Molécula de Interacción Estromal 2/genética , Sinapsis/genética
9.
BMC Genomics ; 17(1): 777, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27716060

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are short non-coding RNAs that are emerging as important post-transcriptional regulators of neuronal and synaptic development. The precise impact of miRNAs on presynaptic function and neurotransmission remains, however, poorly understood. RESULTS: Here, we identify miR-27b-an abundant neuronal miRNA implicated in neurological disorders-as a global regulator of the presynaptic transcriptome. miR-27b influences the expression of three quarters of genes associated with presynaptic function in cortical neurons. Contrary to expectation, a large majority of these genes are up-regulated by miR-27b. This stimulatory effect is mediated by miR-27b-directed silencing of several transcriptional repressors that cooperate to suppress the presynaptic transcriptome. The strongest repressive activity appears to be mediated by Bmi1, a component of the polycomb repressive complex implicated in self-renewal of neural stem cells. miR-27b knockdown leads to reduced synaptogenesis and to a marked decrease in neural network activity, which is fully restored by RNAi-mediated silencing of Bmi1. CONCLUSIONS: We conclude that silencing of Bmi1 by miR-27b relieves repression of the presynaptic transcriptome and supports neurotransmission in cortical networks. These results expand the repressive activity of Bmi1 to genes involved in synaptic function and identify a unique post-transcriptional circuitry that stimulates expression of synaptic genes and promotes synapse differentiation.


Asunto(s)
Silenciador del Gen , MicroARNs/genética , Complejo Represivo Polycomb 1/genética , Terminales Presinápticos/fisiología , Proteínas Proto-Oncogénicas/genética , Transmisión Sináptica/genética , Transcriptoma , Animales , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Ratones , Vías Nerviosas , Interferencia de ARN , ARN Mensajero/genética , Ratas , Proteínas Represoras/genética , Factores de Transcripción SOXC/genética
10.
Trends Cell Biol ; 26(12): 890-893, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27720332

RESUMEN

Store-operated Ca2+ entry (SOCE) is the primary Ca2+ influx pathway in non-excitable cells. Long thought to be absent in nerve cells, neuronal SOCE is gaining popularity. We argue here that the evidence for SOCE in neurons remains contentious, mostly because SOCE imaging assays are inadequate in these cells.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Neuronas/metabolismo , Animales , Canales de Calcio/metabolismo , Humanos , Modelos Biológicos
11.
Artículo en Inglés | MEDLINE | ID: mdl-27378904

RESUMEN

Lesions and mutations of the DISC1 (Disrupted-in-schizophrenia-1) gene have been linked to major depression, schizophrenia, bipolar disorder and autism, but the influence of DISC1 on synaptic transmission remains poorly understood. Using two independent genetic approaches-RNAi and a DISC1 KO mouse-we examined the impact of DISC1 on the synaptic vesicle (SV) cycle by population imaging of the synaptic tracer vGpH in hippocampal neurons. DISC1 loss-of-function resulted in a marked decrease in SV exocytic rates during neuronal stimulation and was associated with reduced Ca(2+) transients at nerve terminals. Impaired SV release was efficiently rescued by elevation of extracellular Ca(2+), hinting at a link between DISC1 and voltage-gated Ca(2+) channels. Accordingly, blockade of N-type Cav2.2 channels mimics and occludes the effect of DISC1 inactivation on SV exocytosis, and overexpression of DISC1 in a heterologous system increases Cav2.2 currents. Collectively, these results show that DISC1-dependent enhancement of SV exocytosis is mediated by Cav2.2 and point to aberrant glutamate release as a probable endophenotype of major psychiatric disorders.

12.
Front Behav Neurosci ; 9: 180, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26236206

RESUMEN

Recent findings point to a central role of the endoplasmic reticulum-resident STIM (Stromal Interaction Molecule) proteins in shaping the structure and function of excitatory synapses in the mammalian brain. The impact of the Stim genes on cognitive functions remains, however, poorly understood. To explore the function of the Stim genes in learning and memory, we generated three mouse strains with conditional deletion (cKO) of Stim1 and/or Stim2 in the forebrain. Stim1, Stim2, and double Stim1/Stim2 cKO mice show no obvious brain structural defects or locomotor impairment. Analysis of spatial reference memory in the Morris water maze revealed a mild learning delay in Stim1 cKO mice, while learning and memory in Stim2 cKO mice was indistinguishable from their control littermates. Deletion of both Stim genes in the forebrain resulted, however, in a pronounced impairment in spatial learning and memory reflecting a synergistic effect of the Stim genes on the underlying neural circuits. Notably, long-term potentiation (LTP) at CA3-CA1 hippocampal synapses was markedly enhanced in Stim1/Stim2 cKO mice and was associated with increased phosphorylation of the AMPA receptor subunit GluA1, the transcriptional regulator CREB and the L-type Voltage-dependent Ca(2+) channel Cav1.2 on protein kinase A (PKA) sites. We conclude that STIM1 and STIM2 are key regulators of PKA signaling and synaptic plasticity in neural circuits encoding spatial memory. Our findings also reveal an inverse correlation between LTP and spatial learning/memory and suggest that abnormal enhancement of cAMP/PKA signaling and synaptic efficacy disrupts the formation of new memories.

13.
Mol Biol Cell ; 26(6): 1141-59, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25609091

RESUMEN

STIMs (STIM1 and STIM2 in mammals) are transmembrane proteins that reside in the endoplasmic reticulum (ER) and regulate store-operated Ca(2+) entry (SOCE). The function of STIMs in the brain is only beginning to be explored, and the relevance of SOCE in nerve cells is being debated. Here we identify STIM2 as a central organizer of excitatory synapses. STIM2, but not its paralogue STIM1, influences the formation of dendritic spines and shapes basal synaptic transmission in excitatory neurons. We further demonstrate that STIM2 is essential for cAMP/PKA-dependent phosphorylation of the AMPA receptor (AMPAR) subunit GluA1. cAMP triggers rapid migration of STIM2 to ER-plasma membrane (PM) contact sites, enhances recruitment of GluA1 to these ER-PM junctions, and promotes localization of STIM2 in dendritic spines. Both biochemical and imaging data suggest that STIM2 regulates GluA1 phosphorylation by coupling PKA to the AMPAR in a SOCE-independent manner. Consistent with a central role of STIM2 in regulating AMPAR phosphorylation, STIM2 promotes cAMP-dependent surface delivery of GluA1 through combined effects on exocytosis and endocytosis. Collectively our results point to a unique mechanism of synaptic plasticity driven by dynamic assembly of a STIM2 signaling complex at ER-PM contact sites.


Asunto(s)
Proteínas de Unión al Calcio/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de la Membrana/fisiología , Procesamiento Proteico-Postraduccional , Receptores AMPA/metabolismo , Animales , Señalización del Calcio , Células Cultivadas , Corteza Cerebral/citología , Espinas Dendríticas/fisiología , Endocitosis , Exocitosis , Células HeLa , Humanos , Plasticidad Neuronal , Fosforilación , Transporte de Proteínas , Ratas , Molécula de Interacción Estromal 2
14.
Cell Rep ; 8(3): 707-13, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25088426

RESUMEN

Primary human cells can be transformed into tumor cells by a defined set of genetic alterations including telomerase, oncogenic Ras(V12), and the tumor suppressors p53 and pRb. SV40 small T (ST) is required for anchorage-independent growth in vitro and in vivo. Here, we identify the Hippo tumor suppressor pathway as a critical target of ST in cellular transformation. We report that ST uncouples YAP from the inhibitory activity of the Hippo pathway through PAK1-mediated inactivation of NF2. Membrane-tethered activated PAK is sufficient to bypass the requirement for ST in anchorage-independent growth. PAK acts via YAP to mediate the transforming effects of ST. Activation of endogenous YAP is required for ST-mediated transformation and is sufficient to bypass ST in anchorage-independent growth and xenograft tumor formation. Our findings uncover the Hippo tumor suppressor pathway as a final gatekeeper to transformation and tumorigenesis of primary cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antígenos Transformadores de Poliomavirus/metabolismo , Transformación Celular Viral , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Antígenos Transformadores de Poliomavirus/genética , Línea Celular , Membrana Celular/metabolismo , Vía de Señalización Hippo , Humanos , Ratones , Ratones SCID , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Proto-Oncogenes Mas , Factores de Transcripción , Proteínas Señalizadoras YAP , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo
15.
J Cell Sci ; 127(Pt 17): 3862-76, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24982445

RESUMEN

Cell migration during development and metastatic invasion requires the coordination of actin and adhesion dynamics to promote protrusive activity at the front of the cell. The knowledge of the molecular mechanisms required to achieve such coordination is fragmentary. Here, we identify a new functional complex that drives cell motility. ERC1a (an isoform of ERC1) and the LL5 proteins LL5α and LL5ß (encoded by PHLDB1 and PHLDB2, respectively) are required, together with liprin-α1, for effective migration and tumor cell invasion, and do so by stabilizing the protrusive activity at the cell front. Depletion of either protein negatively affects invasion, migration on extracellular matrix, lamellipodial persistence and the internalization of active integrin ß1 receptors needed for adhesion turnover at the front of the cell. Liprin-α1, ERC1a and LL5 also define new highly polarized and dynamic cytoplasmic structures uniquely localized near the protruding cell edge. Our results indicate that the functional complex and the associated structures described here represent an important mechanism to drive tumor cell migration.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Integrina beta1/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Seudópodos/metabolismo , Proteínas Portadoras/metabolismo , Adhesión Celular/fisiología , Línea Celular Tumoral , Membrana Celular/metabolismo , Células Cultivadas , Matriz Extracelular/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo
16.
Front Cell Neurosci ; 8: 66, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24624059

RESUMEN

Presynaptic assembly involves the specialization of a patch of axonal membrane into a complex structure that supports synaptic vesicle exocytosis and neurotransmitter release. In mammalian neurons, presynaptic assembly is widely studied in a co-culture assay, where a synaptogenic cue expressed at the surface of a heterologous cell induces presynaptic differentiation in a contacting axon. This assay has led to the discovery of numerous synaptogenic proteins, but has not been used to probe neuronal mechanisms regulating presynaptic induction. The identification of regulatory pathways that fine-tune presynaptic assembly is hindered by the lack of adequate tools to quantitatively image this process. Here, we introduce an image-processing algorithm that identifies presynaptic clusters in mammalian co-cultures and extracts a range of synapse-specific parameters. Using this software, we assessed the intrinsic variability of this synaptic induction assay and probed the effect of eight neuronal microRNAs on presynaptic assembly. Our analysis revealed a novel role for miR-27b in augmenting the density of presynaptic clusters. Our software is applicable to a wide range of synaptic induction protocols (including spontaneous synaptogenesis observed in neuron cultures) and is a valuable tool to determine the subtle impact of disease-associated genes on presynaptic assembly.

17.
Mol Biol Cell ; 24(14): 2228-37, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23676667

RESUMEN

Self-amplification of phosphoinositide 3-kinase (PI3K) signaling is believed to regulate asymmetric membrane extension and cell migration, but the molecular organization of the underlying feedback circuit is elusive. Here we use an inducible approach to synthetically activate PI3K and interrogate the feedback circuitry governing self-enhancement of 3'-phosphoinositide (3-PI) signals in NIH3T3 fibroblasts. Synthetic activation of PI3K initially leads to uniform production of 3-PIs at the plasma membrane, followed by the appearance of asymmetric and highly amplified 3-PI signals. A detailed spatiotemporal analysis shows that local self-amplifying 3-PI signals drive rapid membrane extension with remarkable directional persistence and initiate a robust migratory response. This positive feedback loop is critically dependent on the small GTPase HRas. Silencing of HRas abrogates local amplification of 3-PI signals upon synthetic PI3K activation and results in short-lived protrusion events that do not support cell migration. Finally, our data indicate that this feedback circuit is likely to operate during platelet-derived growth factor-induced random cell migration. We conclude that positive feedback between PI3K and HRas is essential for fibroblasts to spontaneously self-organize and generate a productive migratory response in the absence of spatial cues.


Asunto(s)
Membrana Celular/metabolismo , Retroalimentación Fisiológica , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositoles/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/ultraestructura , Movimiento Celular/efectos de los fármacos , Regulación de la Expresión Génica , Ratones , Células 3T3 NIH , Fosfatidilinositol 3-Quinasas/genética , Factor de Crecimiento Derivado de Plaquetas/farmacología , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Imagen de Lapso de Tiempo
18.
Cell Calcium ; 48(5): 270-4, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20952058

RESUMEN

Advances in fluorescence live cell imaging over the last decade have revolutionized cell biology by providing access to single-cell information in space and time. One current limitation of live-cell imaging is the lack of automated procedures to analyze single-cell data in large cell populations. Most commercially available image processing softwares do not have built-in image segmentation tools that can automatically and accurately extract single-cell data in a time series. Consequently, individual cells are usually identified manually, a process which is time consuming and inherently low-throughput. We have developed a MATLAB-based image segmentation algorithm that reliably detects individual cells in dense populations and measures their fluorescence intensity over time. To demonstrate the value of this algorithm, we measured store-operated calcium entry (SOCE) in hundreds of individual cells. Rapid access to single-cell calcium signals in large populations allowed us to precisely determine the relationship between SOCE activity and STIM1 levels, a key component of SOCE. Our image processing tool can in principle be applied to a wide range of live-cell imaging modalities and cell-based drug screening platforms.


Asunto(s)
Calcio/análisis , Procesamiento Automatizado de Datos/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Análisis de la Célula Individual/métodos , Programas Informáticos , Algoritmos , Animales , Señalización del Calcio/fisiología , Línea Celular Tumoral , Células Clonales , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , ARN Interferente Pequeño/genética , Ratas , Estadística como Asunto , Molécula de Interacción Estromal 1 , Transfección
19.
J Neurosci ; 29(36): 11257-62, 2009 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-19741132

RESUMEN

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are currently recognized as the most common genetic cause of parkinsonism. Among the large number of LRRK2 mutations identified to date, the G2019S variant is the most common. In Asia, however, another LRRK2 variant, G2385R, appears to occur more frequently. To better understand the contribution of different LRRK2 variants toward disease pathogenesis, we generated transgenic Drosophila over-expressing various human LRRK2 alleles, including wild type, G2019S, Y1699C, and G2385R LRRK2. We found that transgenic flies harboring G2019S, Y1699C, or G2385R LRRK2 variant, but not the wild-type protein, exhibit late-onset loss of dopaminergic (DA) neurons in selected clusters that is accompanied by locomotion deficits. Furthermore, LRRK2 mutant flies also display reduced lifespan and increased sensitivity to rotenone, a mitochondrial complex I inhibitor. Importantly, coexpression of human parkin in LRRK2 G2019S-expressing flies provides significant protection against DA neurodegeneration that occurs with age or in response to rotenone. Together, our results suggest a potential link between LRRK2, parkin, and mitochondria in the pathogenesis of LRRK2-related parkinsonism.


Asunto(s)
Sustitución de Aminoácidos/genética , Dopamina/metabolismo , Proteínas de Drosophila/genética , Degeneración Nerviosa/genética , Proteínas Serina-Treonina Quinasas/genética , Animales , Animales Modificados Genéticamente , Drosophila , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/fisiología , Variación Genética/genética , Glicina/genética , Humanos , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/prevención & control , Proteínas Serina-Treonina Quinasas/biosíntesis , Serina/genética , Ubiquitina-Proteína Ligasas
20.
Nat Rev Neurosci ; 9(11): 881-4, 2008 11.
Artículo en Inglés | MEDLINE | ID: mdl-18843270

RESUMEN

As investment in science and technology continues to grow in Asia, countries such as China, Japan and Singapore are witnessing great improvements in their neuroscience research environments; this is reflected in the opening of new research institutions and in the influx of neuroscientists trained abroad. Collaborative projects between researchers in these countries and laboratories in the United States and Europe are not only helping to shape these institutions, they are also leading to a surge in high-quality publications in both basic and translational neuroscience, resulting in increasing international recognition. Nature Reviews Neuroscience asks four neuroscientists about their collaborative experiences and the impact that such collaborations are having on neuroscience research.


Asunto(s)
Conducta Cooperativa , Neurociencias/tendencias , Asia , Investigación Biomédica/métodos , Investigación Biomédica/tendencias , Predicción , Humanos , Neurociencias/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...