Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Psychiatry Glob Open Sci ; 3(3): 418-429, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37519464

RESUMEN

Background: Striatal medium spiny neurons (MSNs) are preferentially lost in Huntington's disease. Genomic studies also implicate a direct role for MSNs in schizophrenia, a psychiatric disorder known to involve cortical neuron dysfunction. It remains unknown whether the two diseases share similar MSN pathogenesis or if neuronal deficits can be attributed to cell type-dependent biological pathways. Transcription factor BCL11B, which is expressed by all MSNs and deep layer cortical neurons, was recently proposed to drive selective neurodegeneration in Huntington's disease and identified as a candidate risk gene in schizophrenia. Methods: Using human stem cell-derived neurons lacking BCL11B as a model, we investigated cellular pathology in MSNs and cortical neurons in the context of these disorders. Integrative analyses between differentially expressed transcripts and published genome-wide association study datasets identified cell type-specific disease-related phenotypes. Results: We uncover a role for BCL11B in calcium homeostasis in both neuronal types, while deficits in mitochondrial function and PKA (protein kinase A)-dependent calcium transients are detected only in MSNs. Moreover, BCL11B-deficient MSNs display abnormal responses to glutamate and fail to integrate dopaminergic and glutamatergic stimulation, a key feature of striatal neurons in vivo. Gene enrichment analysis reveals overrepresentation of disorder risk genes among BCL11B-regulated pathways, primarily relating to cAMP-PKA-calcium signaling axis and synaptic signaling. Conclusions: Our study indicates that Huntington's disease and schizophrenia are likely to share neuronal pathophysiology where dysregulation of intracellular calcium homeostasis is found in both striatal and cortical neurons. In contrast, reduction in PKA signaling and abnormal dopamine/glutamate receptor signaling is largely specific to MSNs.

2.
Neuronal Signal ; 4(2): NS20200004, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32714602

RESUMEN

Activin A and other TGFß family members have been shown to exhibit a certain degree of promiscuity between their family of receptors. We previously developed an efficient differentiation protocol using Activin A to obtain medium spiny neurons (MSNs) from human pluripotent stem cells (hPSCs). However, the mechanism underlying Activin A-induced MSN fate specification remains largely unknown. Here we begin to tease apart the different components of TGFß pathways involved in MSN differentiation and demonstrate that Activin A acts exclusively via ALK4/5 receptors to induce MSN progenitor fate during differentiation. Moreover, we show that Alantolactone, an indirect activator of SMAD2/3 signalling, offers an alternative approach to differentiate hPSC-derived forebrain progenitors into MSNs. Further fine tuning of TGFß pathway by inhibiting BMP signalling with LDN193189 achieves accelerated MSN fate specification. The present study therefore establishes an essential role for TGFß signalling in human MSN differentiation and provides a fully defined and highly adaptable small molecule-based protocol to obtain MSNs from hPSCs.

3.
Stem Cell Reports ; 13(3): 448-457, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31447328

RESUMEN

The mechanisms underlying the selective degeneration of medium spiny neurons (MSNs) in Huntington disease (HD) remain largely unknown. CTIP2, a transcription factor expressed by all MSNs, is implicated in HD pathogenesis because of its interactions with mutant huntingtin. Here, we report a key role for CTIP2 in protein phosphorylation via governing protein kinase A (PKA) signaling in human striatal neurons. Transcriptomic analysis of CTIP2-deficient MSNs implicates CTIP2 target genes at the heart of cAMP-Ca2+ signal integration in the PKA pathway. These findings are further supported by experimental evidence of a substantial reduction in phosphorylation of DARPP32 and GLUR1, two PKA targets in CTIP2-deficient MSNs. Moreover, we show that CTIP2-dependent dysregulation of protein phosphorylation is shared by HD hPSC-derived MSNs and striatal tissues of two HD mouse models. This study therefore establishes an essential role for CTIP2 in human MSN homeostasis and provides mechanistic and potential therapeutic insight into striatal neurodegeneration.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Neuronas/metabolismo , Proteínas Represoras/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Sistemas CRISPR-Cas/genética , Diferenciación Celular , Cuerpo Estriado/metabolismo , Edición Génica , Células Madre Embrionarias Humanas/citología , Humanos , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Neuronas/citología , Estrés Oxidativo , Fosforilación , Receptores AMPA/metabolismo , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Transducción de Señal , Transcriptoma , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética
4.
Methods Mol Biol ; 1780: 585-605, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29856037

RESUMEN

Efficient generation of disease relevant neuronal subtypes from human pluripotent stem cells (PSCs) is fundamental for realizing their promise in disease modeling, pharmaceutical drug screening and cell therapy. Here we describe a step-by-step protocol for directing the differentiation of human embryonic and induced PSCs (hESCs and hiPSCs, respectively) toward medium spiny neurons, the type of cells that are preferentially lost in Huntington's disease patients. This method is based on a novel concept of Activin A-dependent induction of the lateral ganglionic/striatal fate using a simple monolayer culture paradigm under chemically defined conditions. Transplantable medium spiny neuron progenitors amenable for cryopreservation are produced in less than 20 days, which differentiate and mature into a high yield of dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa (DARPP32) expressing gamma-aminobutyric acid (GABA)-ergic neurons in vitro and in the adult rat brain after transplantation. This method has been validated in multiple hESC and hiPSC lines, and is independent of the regime for PSC maintenance.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/efectos de los fármacos , Neuronas GABAérgicas/fisiología , Células Madre Embrionarias Humanas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/fisiología , Activinas/farmacología , Técnicas de Cultivo de Célula/instrumentación , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Cuerpo Estriado/citología , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Neuronas GABAérgicas/trasplante , Células Madre Embrionarias Humanas/fisiología , Humanos , Enfermedad de Huntington/terapia , Células Madre Pluripotentes Inducidas/efectos de los fármacos
5.
Exp Neurol ; 291: 8-19, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28131726

RESUMEN

Foetal midbrain progenitors have been shown to survive, give rise to different classes of dopamine neurons and integrate into the host brain alleviating Parkinsonian symptoms following transplantation in patients and animal models of the disease. Dopamine neuron subpopulations in the midbrain, namely A9 and A10, can be identified anatomically based on cell morphology and ascending axonal projections. G protein-gated inwardly rectifying potassium channel Girk2 and the calcium binding protein Calbindin are the two best available histochemical markers currently used to label (with some overlap) A9- and A10-like dopamine neuron subtypes, respectively, in tyrosine hydroxylase expressing neurons both in the midbrain and grafts. Both classes of dopamine neurons survive in grafts in the striatum and extend axonal projections to their normal dorsal and ventral striatal targets depending on phenotype. Nevertheless, grafts transplanted into the dorsal striatum, which is an A9 input nucleus, are enriched for dopamine neurons that express Girk2. It remains to be elucidated whether different transplantation sites favour the differential survival and/or development of concordant dopamine neuron subtypes within the grafts. Here we used rat foetal midbrain progenitors at two developmental stages corresponding to a peak in either A9 or A10 neurogenesis and examined their commitment to respective dopaminergic phenotypes by grafting cells into different forebrain regions that contain targets of either nigral A9 dopamine innervation (dorsal striatum), ventral tegmental area A10 dopamine innervation (nucleus accumbens and prefrontal cortex), or only sparse dopamine but rich noradrenaline innervation (hippocampus). We demonstrate that young (embryonic day, E12), but not older (E14), mesencephalic tissue and the transplant environment influence survival and functional integration of specific subtypes of dopamine neurons into the host brain. We also show that irrespective of donor age A9-like, Girk2-expressing neurons are more responsive to environmental cues in adopting a dopaminergic phenotype during differentiation post-grafting. These novel findings suggest that dopamine progenitors use targets of A9/A10 innervation in the transplantation site to complete maturation and the efficacy of foetal cell replacement therapy in patients may be improved by deriving midbrain tissue at earlier developmental stages than in current practice.


Asunto(s)
Trasplante de Tejido Encefálico , Neuronas Dopaminérgicas/fisiología , Neurogénesis/fisiología , Trastornos Parkinsonianos/cirugía , Área Tegmental Ventral/trasplante , Adrenérgicos/toxicidad , Anfetamina/farmacología , Animales , Modelos Animales de Enfermedad , Agonistas de Dopamina/farmacología , Embrión de Mamíferos , Femenino , Masculino , Haz Prosencefálico Medial/lesiones , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Embarazo , Ratas , Ratas Sprague-Dawley , Conducta Estereotipada/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo , Área Tegmental Ventral/efectos de los fármacos
6.
Development ; 142(7): 1375-86, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25804741

RESUMEN

The efficient generation of striatal neurons from human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) is fundamental for realising their promise in disease modelling, pharmaceutical drug screening and cell therapy for Huntington's disease. GABAergic medium-sized spiny neurons (MSNs) are the principal projection neurons of the striatum and specifically degenerate in the early phase of Huntington's disease. Here we report that activin A induces lateral ganglionic eminence (LGE) characteristics in nascent neural progenitors derived from hESCs and hiPSCs in a sonic hedgehog-independent manner. Correct specification of striatal phenotype was further demonstrated by the induction of the striatal transcription factors CTIP2, GSX2 and FOXP2. Crucially, these human LGE progenitors readily differentiate into postmitotic neurons expressing the striatal projection neuron signature marker DARPP32, both in culture and following transplantation in the adult striatum in a rat model of Huntington's disease. Activin-induced neurons also exhibit appropriate striatal-like electrophysiology in vitro. Together, our findings demonstrate a novel route for efficient differentiation of GABAergic striatal MSNs from human pluripotent stem cells.


Asunto(s)
Activinas/farmacología , Diferenciación Celular/efectos de los fármacos , Neostriado/citología , Neuronas/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Ganglios/efectos de los fármacos , Ganglios/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Enfermedad de Huntington/patología , Enfermedad de Huntington/terapia , Neuronas/metabolismo , Neuronas/trasplante , Células Madre Pluripotentes/metabolismo , Ratas , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Supresoras de Tumor/metabolismo
8.
Neurogenesis (Austin) ; 2(1): e1100227, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27606330

RESUMEN

Medium spiny neurons (MSNs) are the main projection neurons of the striatum and are preferentially lost in Huntington's disease (HD). With no current cure for this neurodegenerative disorder, the specificity of neuronal loss in the striatum makes cell transplantation therapy an attractive avenue for its treatment. Also, given that MSNs are particularly vulnerable in HD, it is necessary to understand why these neurons degenerate in order to develop new therapeutic options. Both approaches require access to human MSN progenitors and their mature neuronal derivatives. Human embryonic stem cells and HD patient induced pluripotent stem cells (together referred to as hPSCs) may serve as an unlimited source of such tissue if they can be directed toward authentic striatal neuronal lineage. Understanding the MSN differentiation pathway in the brain is therefore of paramount importance for the generation of accurate protocols to obtain striatal cells in vitro. The focus of this mini review will be on striatal development and current methods to generate MSNs from hPSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...