Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3631, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684731

RESUMEN

Idiopathic Parkinson's disease (iPD) is believed to have a heterogeneous pathophysiology, but molecular disease subtypes have not been identified. Here, we show that iPD can be stratified according to the severity of neuronal respiratory complex I (CI) deficiency, and identify two emerging disease subtypes with distinct molecular and clinical profiles. The CI deficient (CI-PD) subtype accounts for approximately a fourth of all cases, and is characterized by anatomically widespread neuronal CI deficiency, a distinct cell type-specific gene expression profile, increased load of neuronal mtDNA deletions, and a predilection for non-tremor dominant motor phenotypes. In contrast, the non-CI deficient (nCI-PD) subtype exhibits no evidence of mitochondrial impairment outside the dopaminergic substantia nigra and has a predilection for a tremor dominant phenotype. These findings constitute a step towards resolving the biological heterogeneity of iPD with implications for both mechanistic understanding and treatment strategies.


Asunto(s)
ADN Mitocondrial , Complejo I de Transporte de Electrón , Complejo I de Transporte de Electrón/deficiencia , Mitocondrias , Enfermedades Mitocondriales , Enfermedad de Parkinson , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Humanos , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Masculino , ADN Mitocondrial/genética , Femenino , Mitocondrias/metabolismo , Mitocondrias/genética , Anciano , Sustancia Negra/metabolismo , Sustancia Negra/patología , Persona de Mediana Edad , Fenotipo , Neuronas/metabolismo
2.
Front Cell Dev Biol ; 10: 874596, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35433702

RESUMEN

Parkinson's disease (PD) is the most common age-dependent neurodegenerative synucleinopathy. Loss of dopaminergic neurons of the substantia nigra pars compacta, together with region- and cell-specific aggregations of α -synuclein are considered main pathological hallmarks of PD, but its etiopathogenesis remains largely unknown. Mitochondrial dysfunction, in particular quantitative and/or functional deficiencies of the mitochondrial respiratory chain (MRC), has been associated with the disease. However, after decades of research in this field, the pervasiveness and anatomical extent of MRC dysfunction in PD remain largely unknown. Moreover, it is not known whether the observed MRC defects are pathogenic, compensatory responses, or secondary epiphenomena. In this perspective, we give an overview of current evidence for MRC dysfunction in PD, highlight pertinent knowledge gaps, and propose potential strategies for future research.

3.
Acta Neuropathol Commun ; 8(1): 50, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32299489

RESUMEN

Mitochondrial dysfunction has been implicated in multiple neurodegenerative diseases but remains largely unexplored in Creutzfeldt-Jakob disease. Here, we characterize the mitochondrial respiratory chain at the individual neuron level in the MM1 and VV2 common molecular subtypes of sporadic Creutzfeldt-Jakob disease. Moreover, we investigate the associations between the mitochondrial respiratory chain and neuropathological markers of the disease.Brain tissue from individuals with sporadic Creutzfeldt-Jakob disease and age-matched controls were obtained from the brain collection of the Austrian Creutzfeldt-Jakob Surveillance. The mitochondrial respiratory chain was studied through a dichotomous approach of immunoreactivities in the temporal cortex and the hippocampal subregions of CA4 and CA3.We show that profound deficiency of all mitochondrial respiratory complexes (I-V) occurs in neurons of the severely affected temporal cortex of patients with Creutzfeldt-Jakob disease. This deficiency correlates strongly with the severity of neuropathological changes, including vacuolation of the neuropil, gliosis and disease associated prion protein load. Respiratory chain deficiency is less pronounced in hippocampal CA4 and CA3 regions compared to the temporal cortex. In both areas respiratory chain deficiency shows a predilection for the MM1 molecular subtype of Creutzfeldt-Jakob disease.Our findings indicate that aberrant mitochondrial respiration could be involved early in the pathogenesis of sporadic Creutzfeldt-Jakob disease and contributes to neuronal death, most likely via ATP depletion. Based on these results, we propose that the restricted MRI diffusion profile seen in the brain of patients with sporadic Creutzfeldt-Jakob disease might reflect cytotoxic changes due to neuronal respiratory chain failure and ATP loss.


Asunto(s)
Región CA3 Hipocampal/metabolismo , Síndrome de Creutzfeldt-Jakob/metabolismo , Giro Dentado/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/deficiencia , Mitocondrias/metabolismo , Neuronas/metabolismo , Lóbulo Temporal/metabolismo , Región CA3 Hipocampal/patología , Estudios de Casos y Controles , Respiración de la Célula , Síndrome de Creutzfeldt-Jakob/enzimología , Síndrome de Creutzfeldt-Jakob/patología , Giro Dentado/patología , Femenino , Humanos , Masculino , Mitocondrias/enzimología , Neuronas/patología , Índice de Severidad de la Enfermedad , Lóbulo Temporal/patología
4.
Curr Opin Neurol ; 31(4): 472-483, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29750731

RESUMEN

PURPOSE OF REVIEW: The scope of this review is to give an updated account of movement disorders associated with mitochondrial disease, with a particular focus on recently discovered clinicopathological correlations. RECENT FINDINGS: Movement disorders are common clinical manifestations of mitochondrial diseases, in part because of the high vulnerability of neurons controlling motor circuits to mitochondrial respiratory dysfunction and energy failure. Intriguingly, the clinicopathological correlations of movement disorders in mitochondrial disease do not always conform to established neurophysiological knowledge. In particular, nearly complete substantia nigra degeneration and nigrostriatal denervation can occur without being accompanied by any of the clinical signs traditionally associated with parkinsonism. This apparent paradox, may be because of compensation by concomitant impairment of other motor circuits involving the cerebellum and thalamus. SUMMARY: Movement disorders commonly accompany mitochondrial disease and may show paradoxical clinical-anatomical correlations. Further research is warranted in order to elucidate the mechanisms underlying the phenotypic expression of movement disorders in mitochondrial disease. This knowledge will advance our understanding of the pathogenesis of movement disorders in a broader clinical and pathophysiological context.


Asunto(s)
Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/terapia , Trastornos del Movimiento/etiología , Trastornos del Movimiento/terapia , Animales , Enfermedades Cerebelosas/patología , Enfermedades Cerebelosas/terapia , Humanos , Sustancia Negra/patología
5.
Acta Neuropathol ; 135(3): 409-425, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29270838

RESUMEN

Mitochondrial complex I deficiency occurs in the substantia nigra of individuals with Parkinson's disease. It is generally believed that this phenomenon is caused by accumulating mitochondrial DNA damage in neurons and that it contributes to the process of neurodegeneration. We hypothesized that if these theories are correct, complex I deficiency should extend beyond the substantia nigra to other affected brain regions in Parkinson's disease and correlate tightly with neuronal mitochondrial DNA damage. To test our hypothesis, we employed a combination of semiquantitative immunohistochemical analyses, Western blot and activity measurements, to assess complex I quantity and function in multiple brain regions from an extensively characterized population-based cohort of idiopathic Parkinson's disease (n = 18) and gender and age matched healthy controls (n = 11). Mitochondrial DNA was assessed in single neurons from the same areas by real-time PCR. Immunohistochemistry showed that neuronal complex I deficiency occurs throughout the Parkinson's disease brain, including areas spared by the neurodegenerative process such as the cerebellum. Activity measurements in brain homogenate confirmed a moderate decrease of complex I function, whereas Western blot was less sensitive, detecting only a mild reduction, which did not reach statistical significance at the group level. With the exception of the substantia nigra, neuronal complex I loss showed no correlation with the load of somatic mitochondrial DNA damage. Interestingly, α-synuclein aggregation was less common in complex I deficient neurons in the substantia nigra. We show that neuronal complex I deficiency is a widespread phenomenon in the Parkinson's disease brain which, contrary to mainstream theory, does not follow the anatomical distribution of neurodegeneration and is not associated with the neuronal load of mitochondrial DNA mutation. Our findings suggest that complex I deficiency in Parkinson's disease can occur independently of mitochondrial DNA damage and may not have a pathogenic role in the neurodegenerative process.


Asunto(s)
Encéfalo/metabolismo , Complejo I de Transporte de Electrón/deficiencia , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Anciano , Anciano de 80 o más Años , Encéfalo/patología , Daño del ADN , ADN Mitocondrial/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/patología , Enfermedades Mitocondriales/patología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Neuronas/patología , Enfermedad de Parkinson/patología , Estudios Prospectivos , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , alfa-Sinucleína/metabolismo
6.
Neuro Oncol ; 19(3): 383-393, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27591677

RESUMEN

Background: Invasion and angiogenesis are major hallmarks of glioblastoma (GBM) growth. While invasive tumor cells grow adjacent to blood vessels in normal brain tissue, tumor cells within neovascularized regions exhibit hypoxic stress and promote angiogenesis. The distinct microenvironments likely differentially affect metabolic processes within the tumor cells. Methods: In the present study, we analyzed gene expression and metabolic changes in a human GBM xenograft model that displayed invasive and angiogenic phenotypes. In addition, we used glioma patient biopsies to confirm the results from the xenograft model. Results: We demonstrate that the angiogenic switch in our xenograft model is linked to a proneural-to-mesenchymal transition that is associated with upregulation of the transcription factors BHLHE40, CEBPB, and STAT3. Metabolic analyses revealed that angiogenic xenografts employed higher rates of glycolysis compared with invasive xenografts. Likewise, patient biopsies exhibited higher expression of the glycolytic enzyme lactate dehydrogenase A and glucose transporter 1 in hypoxic areas compared with the invasive edge and lower-grade tumors. Analysis of the mitochondrial respiratory chain showed reduction of complex I in angiogenic xenografts and hypoxic regions of GBM samples compared with invasive xenografts, nonhypoxic GBM regions, and lower-grade tumors. In vitro hypoxia experiments additionally revealed metabolic adaptation of invasive tumor cells, which increased lactate production under long-term hypoxia. Conclusions: The use of glycolysis versus mitochondrial respiration for energy production within human GBM tumors is highly dependent on the specific microenvironment. The metabolic adaptability of GBM cells highlights the difficulty of targeting one specific metabolic pathway for effective therapeutic intervention.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Neovascularización Patológica/metabolismo , Factores de Transcripción/metabolismo , Animales , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Hipoxia de la Célula , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glioblastoma/irrigación sanguínea , Glioblastoma/genética , Glioblastoma/patología , Glucólisis , Humanos , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Ratas , Ratas Desnudas , Activación Transcripcional , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA